Skip to main content

The Myeloid Growth Factors

  • Chapter
  • First Online:
Hematopoietic Growth Factors in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 157))

Abstract

The myeloid growth factors (MGFs) are an important class of biologic agents for the support of cancer patients receiving myelosuppressive chemotherapy by augmenting the production and functional maturation of hematopoietic cells for the purpose of reducing hematologic complications while enabling the safe delivery of effective treatment. This chapter will focus on MGFs with known clinical importance for hematopoiesis in the patient with cancer. Myelosuppression and its sequelae represent the most common dose-limiting complications of cancer chemotherapy and are associated with considerable morbidity, mortality, and costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metcalf D. Studies on colony formation in vitro by mouse bone marrow cells. I. Continuous cluster formation and relation of clusters to colonies. J Cell Physiol. 1969;74:323–32.

    Article  PubMed  CAS  Google Scholar 

  2. Metcalf D, Foster R. Bone marrow colony-stimulating activity of serum from mice with viral-induced leukemia. J Natl Cancer Inst. 1967;39:1235–45.

    PubMed  CAS  Google Scholar 

  3. Clark SC, Kamen R. The human hematopoietic colony-stimulating factors. Science. 1987;236:1229–37.

    Article  PubMed  CAS  Google Scholar 

  4. Burgess AW, Metcalf D. Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemic cells. Int J Cancer. 1980;26:647–54.

    Article  PubMed  CAS  Google Scholar 

  5. Moore MA. G-CSF: its relationship to leukemia differentiation-inducing activity and other hemopoietic regulators. J Cell Physiol Suppl. 1982;1:53–64.

    Article  PubMed  CAS  Google Scholar 

  6. Bagby G, Heinrich M. Growth factors cytokines, and the control of hematopoiesis. In: Hoffman R, Shattil SJ, editors. Hematology basic principles and practice. Philadelphia, PA: Churchill Livingstone; 2000. pp. 154–202.

    Google Scholar 

  7. Moore M. Colony stimulating factors: basic principles and preclinical studies. In: Rosenberg S, editor. Principles and practice of the biologic therapy of cancer. Philadelphia, PA: Lippincott Williams & Wilkins; 2000. pp. 113–40.

    Google Scholar 

  8. Smith TJ, Khatcheressian J, Lyman GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006;2006(24):3187–205.

    Article  CAS  Google Scholar 

  9. Crawford J, Dale DC, Kuderer NM, et al. Risk and timing of neutropenic events in adult cancer patients receiving chemotherapy: the results of a prospective nationwide study of oncology practice. J Natl Compr Canc Netw. 2008;6:109–18.

    PubMed  Google Scholar 

  10. Lyman GH, Delgado DJ. Risk and timing of hospitalization for febrile neutropenia in patients receiving CHOP, CHOP-R, or CNOP chemotherapy for intermediate-grade non-Hodgkin lymphoma. Cancer. 2003;98:2402–9.

    Article  PubMed  Google Scholar 

  11. Lyman GH, Morrison VA, Dale DC, et al. Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin’s lymphoma receiving CHOP chemotherapy. Leuk Lymphoma. 2003;44:2069–76.

    Article  PubMed  CAS  Google Scholar 

  12. Kuderer NM, Dale DC, Crawford J, et al. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol. 2007;25:3158–67.

    Article  PubMed  CAS  Google Scholar 

  13. Lyman GH. Pegfilgrastim: a granulocyte colony-stimulating factor with sustained duration of action. Expert Opin Biol Ther. 2005;5:1635–46.

    Article  PubMed  CAS  Google Scholar 

  14. Kotto-Kome AC, Fox SE, Lu W, et al. Evidence that the granulocyte colony-stimulating factor (G-CSF) receptor plays a role in the pharmacokinetics of G-CSF and PegG-CSF using a G-CSF-R KO model. Pharmacol Res. 2004;50:55–8.

    Article  PubMed  CAS  Google Scholar 

  15. Yang BB, Lum PK, Hayashi MM, et al. Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci. 2004;93:1367–73.

    Article  PubMed  CAS  Google Scholar 

  16. Holmes FA, Jones SE, O’Shaughnessy J, et al. Comparable efficacy and safety profiles of once-per-cycle pegfilgrastim and daily injection filgrastim in chemotherapy-induced neutropenia: a multicenter dose-finding study in women with breast cancer. Ann Oncol. 2002;13:903–9.

    Article  PubMed  CAS  Google Scholar 

  17. Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des. 2004;10:1235–44.

    Article  PubMed  CAS  Google Scholar 

  18. Misset JL, Dieras V, Gruia G, et al. Dose-finding study of docetaxel and doxorubicin in first-line treatment of patients with metastatic breast cancer. Ann Oncol. 1999;10:553–60.

    Article  PubMed  CAS  Google Scholar 

  19. Holmes FA, O’Shaughnessy JA, Vukelja S, et al. Blinded, randomized, multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer. J Clin Oncol. 2002;20:727–31.

    Article  PubMed  CAS  Google Scholar 

  20. Green MD, Koelbl H, Baselga J, et al. A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann Oncol. 2003;14:29–35.

    Article  PubMed  CAS  Google Scholar 

  21. Vogel CL, Wojtukiewicz MZ, Carroll RR, et al. First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study. J Clin Oncol. 2005;23:1178–84.

    Article  PubMed  CAS  Google Scholar 

  22. Citron ML, Berry DA, Cirrincione C, et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol. 2003;21:1431–9.

    Article  PubMed  CAS  Google Scholar 

  23. Pfreundschuh M, Trumper L, Kloess M, et al. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood. 2004;104:634–41.

    Article  PubMed  CAS  Google Scholar 

  24. Pfreundschuh M, Trumper L, Kloess M, et al. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of young patients with good-prognosis (normal LDH) aggressive lymphomas: results of the NHL-B1 trial of the DSHNHL. Blood. 2004;104:626–33.

    Article  PubMed  CAS  Google Scholar 

  25. Hartmann LC, Tschetter LK, Habermann TM, et al. Granulocyte colony-stimulating factor in severe chemotherapy-induced afebrile neutropenia. N Engl J Med. 1997;336:1776–80.

    Article  PubMed  CAS  Google Scholar 

  26. Clark OA, Lyman GH, Castro AA, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia: a meta-analysis of randomized controlled trials. J Clin Oncol. 2005;23:4198–214.

    Article  PubMed  CAS  Google Scholar 

  27. Aapro MS, Cameron DA, Pettengell R, et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur J Cancer. 2006;42:2433–53.

    Article  PubMed  CAS  Google Scholar 

  28. Crawford J, Armitage J, Balducci L, et al. Myeloid growth factors. J Natl Compr Canc Netw. 2009;7:64–83.

    PubMed  CAS  Google Scholar 

  29. Shayne M, Culakova E, Poniewierski MS, et al. Dose intensity and hematologic toxicity in older cancer patients receiving systemic chemotherapy. Cancer. 2007;110:1611–20.

    Article  PubMed  Google Scholar 

  30. Doorduijn JK, van der Holt B, van Imhoff GW, et al. CHOP compared with CHOP plus granulocyte colony-stimulating factor in elderly patients with aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21:3041–50.

    Article  PubMed  CAS  Google Scholar 

  31. Lyman GH, Kuderer N, Agboola O, et al. Evidence-based use of colony-stimulating factors in elderly cancer patients. Cancer Control. 2003;10:487–99.

    PubMed  Google Scholar 

  32. Osby E, Hagberg H, Kvaloy S, et al. CHOP is superior to CNOP in elderly patients with aggressive lymphoma while outcome is unaffected by filgrastim treatment: results of a Nordic Lymphoma Group randomized trial. Blood. 2003;101:3840–8.

    Article  PubMed  CAS  Google Scholar 

  33. Zinzani PL, Pavone E, Storti S, et al. Randomized trial with or without granulocyte colony-stimulating factor as adjunct to induction VNCOP-B treatment of elderly high-grade non-Hodgkin’s lymphoma. Blood. 1997;89:3974–9.

    PubMed  CAS  Google Scholar 

  34. Balducci L, Al-Halawani H, Charu V, et al. Elderly cancer patients receiving chemotherapy benefit from first-cycle pegfilgrastim. Oncologist. 2007;12:1416–24.

    Article  PubMed  CAS  Google Scholar 

  35. Lowenberg B, van Putten W, Theobald M, et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med. 2003;349:743–52.

    Article  PubMed  Google Scholar 

  36. Harousseau JL, Witz B, Lioure B, et al. Granulocyte colony-stimulating factor after intensive consolidation chemotherapy in acute myeloid leukemia: results of a randomized trial of the Groupe Ouest-Est Leucemies Aigues Myeloblastiques. J Clin Oncol. 2000;18:780–7.

    PubMed  CAS  Google Scholar 

  37. Heil G, Hoelzer D, Sanz MA, et al. A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood. 1997;90:4710–18.

    PubMed  CAS  Google Scholar 

  38. Larson RA, Dodge RK, Linker CA, et al. A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: CALGB study 9111. Blood. 1998;92:1556–64.

    PubMed  CAS  Google Scholar 

  39. Laver J, Amylon M, Desai S, et al. Randomized trial of r-metHu granulocyte colony-stimulating factor in an intensive treatment for T-cell leukemia and advanced-stage lymphoblastic lymphoma of childhood: a Pediatric Oncology Group pilot study. J Clin Oncol. 1998;16:522–6.

    PubMed  CAS  Google Scholar 

  40. Pui CH, Boyett JM, Hughes WT, et al. Human granulocyte colony-stimulating factor after induction chemotherapy in children with acute lymphoblastic leukemia. N Engl J Med. 1997;336:1781–7.

    Article  PubMed  CAS  Google Scholar 

  41. Ottmann OG, Hoelzer D, Gracien E, et al. Concomitant granulocyte colony-stimulating factor and induction chemoradiotherapy in adult acute lymphoblastic leukemia: a randomized phase III trial. Blood. 1995;86:444–50.

    PubMed  CAS  Google Scholar 

  42. D’Hondt L, Emmons RV, Andre M, et al. The administration of 10 microg/kg granulocyte colony-stimulating factor (G-CSF) alone results in a successful peripheral blood stem cell collection when previous mobilization with chemotherapy and hematopoietic growth factor failed. Leuk Lymphoma. 1999;34:105–9.

    PubMed  Google Scholar 

  43. Klumpp TR, Mangan KF, Goldberg SL, et al. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J Clin Oncol. 1995;13:1323–7.

    PubMed  CAS  Google Scholar 

  44. Kroger N, Zander AR. Dose and schedule effect of G-GSF for stem cell mobilization in healthy donors for allogeneic transplantation. Leuk Lymphoma. 2002;43:1391–4.

    Article  PubMed  CAS  Google Scholar 

  45. Kroger N, Zeller W, Hassan HT, et al. Successful mobilization of peripheral blood stem cells in heavily pretreated myeloma patients with G-CSF alone. Ann Hematol. 1998;76:257–62.

    Article  PubMed  CAS  Google Scholar 

  46. Lefrere F, Makke J, Fermand J, et al. Blood stem cell collection using chemotherapy with or without systematic G-CSF: experience in 52 patients with multiple myeloma. Bone Marrow Transplant. 1999;24:463–6.

    Article  PubMed  CAS  Google Scholar 

  47. Nemunaitis J, Appelbaum F, Singer J. Effect of GM-CSF on circulating granulocyte–monocyte progenitors in autologous bone marrow transplantation. Lancet. 1989;2:1405–6.

    Article  PubMed  CAS  Google Scholar 

  48. Spitzer G, Adkins D, Mathews M, et al. Randomized comparison of G-CSF+ GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: effects on hematopoietic recovery after high-dose chemotherapy. Bone Marrow Transplant. 1997;20:921–30.

    Article  PubMed  CAS  Google Scholar 

  49. Chao NJ, Schriber JR, Grimes K, et al. Granulocyte colony-stimulating factor “mobilized” peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood. 1993;81:2031–5.

    PubMed  CAS  Google Scholar 

  50. Peters WP, Rosner G, Ross M, et al. Comparative effects of granulocyte–macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. Blood. 1993;81:1709–19.

    PubMed  CAS  Google Scholar 

  51. Sheridan WP, Begley CG, Juttner CA, et al. Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet. 1992;339:640–4.

    Article  PubMed  CAS  Google Scholar 

  52. Steidl U, Fenk R, Bruns I, et al. Successful transplantation of peripheral blood stem cells mobilized by chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant. 2005;35:33–6.

    Article  PubMed  CAS  Google Scholar 

  53. Isidori A, Tani M, Bonifazi F, et al. Phase II study of a single pegfilgrastim injection as an adjunct to chemotherapy to mobilize stem cells into the peripheral blood of pretreated lymphoma patients. Haematologica. 2005;90:225–31.

    PubMed  CAS  Google Scholar 

  54. Kroschinsky F, Holig K, Poppe-Thiede K, et al. Single-dose pegfilgrastim for the mobilization of allogeneic CD34+ peripheral blood progenitor cells in healthy family and unrelated donors. Haematologica. 2005;90:1665–71.

    PubMed  CAS  Google Scholar 

  55. Noga S, Oroszlan M, Hetherington J. Use of pegfilgrastim for autologous peripheral blood stem cell mobilization: comparison to a daily filgrastim regimen. Bone Marrow Transplant. 2003;31:S18.

    Google Scholar 

  56. Noga SJ, Oroszlan M, Zhang YL. Single dose pegfilgrastim successfully mobilizes optimal numbers of autologous CD34+ cells for peripheral blood stem cell collection. Blood. 2002;100:826a. Abstract 3262.

    Google Scholar 

  57. Asano S, Masaoka T, Takaku F. Beneficial effect of recombinant human glycosylated granulocyte colony-stimulating factor in marrow-transplanted patients: results of multicenter phase II–III studies. Transplant Proc. 1991;23:1701–3.

    PubMed  CAS  Google Scholar 

  58. Bishop MR, Tarantolo SR, Geller RB, et al. A randomized, double-blind trial of filgrastim (granulocyte colony-stimulating factor) versus placebo following allogeneic blood stem cell transplantation. Blood. 2000;96:80–5.

    PubMed  CAS  Google Scholar 

  59. Schmitz N, Dreger P, Zander AR, et al. Results of a randomised, controlled, multicentre study of recombinant human granulocyte colony-stimulating factor (filgrastim) in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma undergoing autologous bone marrow transplantation. Bone Marrow Transplant. 1995;15:261–6.

    PubMed  CAS  Google Scholar 

  60. Stahel RA, Jost LM, Cerny T, et al. Randomized study of recombinant human granulocyte colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation for high-risk lymphoid malignancies. J Clin Oncol. 1994;12:1931–8.

    PubMed  CAS  Google Scholar 

  61. Kawano Y, Takaue Y, Mimaya J, et al. Marginal benefit/disadvantage of granulocyte colony-stimulating factor therapy after autologous blood stem cell transplantation in children: results of a prospective randomized trial. The Japanese Cooperative Study Group of PBSCT. Blood. 1998;92:4040–6.

    PubMed  CAS  Google Scholar 

  62. Lee SM, Radford JA, Dobson L, et al. Recombinant human granulocyte colony-stimulating factor (filgrastim) following high-dose chemotherapy and peripheral blood progenitor cell rescue in high-grade non-Hodgkin’s lymphoma: clinical benefits at no extra cost. Br J Cancer. 1998;77:1294–9.

    PubMed  CAS  Google Scholar 

  63. McQuaker IG, Hunter AE, Pacey S, et al. Low-dose filgrastim significantly enhances neutrophil recovery following autologous peripheral-blood stem-cell transplantation in patients with lymphoproliferative disorders: evidence for clinical and economic benefit. J Clin Oncol. 1997;15:451–7.

    PubMed  CAS  Google Scholar 

  64. Shimazaki C, Oku N, Uchiyama H, et al. Effect of granulocyte colony-stimulating factor on hematopoietic recovery after peripheral blood progenitor cell transplantation. Bone Marrow Transplant. 1994;13:271–5.

    PubMed  CAS  Google Scholar 

  65. Staber PB, Holub R, Linkesch W, et al. Fixed-dose single administration of pegfilgrastim vs daily filgrastim in patients with haematological malignancies undergoing autologous peripheral blood stem cell transplantation. Bone Marrow Transplant. 2005;35:889–93.

    Article  PubMed  CAS  Google Scholar 

  66. Ringden O, Labopin M, Gorin NC, et al. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2004;22:416–23.

    Article  PubMed  CAS  Google Scholar 

  67. Komrokji RS, Lyman GH. The colony-stimulating factors: use to prevent and treat neutropenia and its complications. Expert Opin Biol Ther. 2004;4:1897–910.

    Article  PubMed  CAS  Google Scholar 

  68. Younes A, Fayad L, Romaguera J, et al. Safety and efficacy of once-per-cycle pegfilgrastim in support of ABVD chemotherapy in patients with Hodgkin lymphoma. Eur J Cancer. 2006;42:2976–81.

    Article  PubMed  CAS  Google Scholar 

  69. Lopez A, Fernandez de Sevilla A, Castaigne S. Pegfilgrastim supports delivery of CHOP-R chemotherapy administered every 14 days: a randomised phase II study. Blood. 2004;104:904a–5a. Abstract 3311.

    Article  Google Scholar 

  70. Hershman D, Neugut AI, Jacobson JS, et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J Natl Cancer Inst. 2007;99:196–205.

    Article  PubMed  CAS  Google Scholar 

  71. Lyman GH, Dale DC, Wolff DA, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol. 2010;28(17):2914–24.

    Article  PubMed  Google Scholar 

  72. Burgess AW, Camakaris J, Metcalf D. Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem. 1977;252:1998–2003.

    PubMed  CAS  Google Scholar 

  73. Gough NM, Gough J, Metcalf D, et al. Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte–macrophage colony stimulating factor. Nature. 1984;309:763–7.

    Article  PubMed  CAS  Google Scholar 

  74. Peters WP, Stuart A, Affronti ML, et al. Neutrophil migration is defective during recombinant human granulocyte–macrophage colony-stimulating factor infusion after autologous bone marrow transplantation in humans. Blood. 1988;72:1310–15.

    PubMed  CAS  Google Scholar 

  75. Rowe JM, Andersen JW, Mazza JJ, et al. A randomized placebo-controlled phase III study of granulocyte–macrophage colony-stimulating factor in adult patients (> 55–70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood. 1995;86:457–62.

    PubMed  CAS  Google Scholar 

  76. Witz F, Sadoun A, Perrin MC, et al. A placebo-controlled study of recombinant human granulocyte–macrophage colony-stimulating factor administered during and after induction treatment for de novo acute myelogenous leukemia in elderly patients. Groupe Ouest Est Leucemies Aigues Myeloblastiques (GOELAM). Blood. 1998;91:2722–30.

    PubMed  CAS  Google Scholar 

  77. Boiron JM, Marit G, Faberes C, et al. Collection of peripheral blood stem cells in multiple myeloma following single high-dose cyclophosphamide with and without recombinant human granulocyte–macrophage colony-stimulating factor (rhGM-CSF). Bone Marrow Transplant. 1993;12:49–55.

    PubMed  CAS  Google Scholar 

  78. Elias AD, Ayash L, Anderson KC, et al. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte–macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood. 1992;79:3036–44.

    PubMed  CAS  Google Scholar 

  79. Huan SD, Hester J, Spitzer G, et al. Influence of mobilized peripheral blood cells on the hematopoietic recovery by autologous marrow and recombinant human granulocyte–macrophage colony-stimulating factor after high-dose cyclophosphamide, etoposide, and cisplatin. Blood. 1992;79:3388–93.

    PubMed  CAS  Google Scholar 

  80. Legros M, Fleury J, Bay JO, et al. rhGM-CSF vs placebo following rhGM-CSF-mobilized PBPC transplantation: a phase III double-blind randomized trial. Bone Marrow Transplant. 1997;19:209–13.

    Article  PubMed  CAS  Google Scholar 

  81. Kritz A, Crown JP, Motzer RJ, et al. Beneficial impact of peripheral blood progenitor cells in patients with metastatic breast cancer treated with high-dose chemotherapy plus granulocyte–macrophage colony-stimulating factor. A randomized trial. Cancer. 1993;71:2515–21.

    Article  PubMed  CAS  Google Scholar 

  82. Advani R, Chao NJ, Horning SJ, et al. Granulocyte–macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hemopoietic stem cell transplantation for lymphoma. Ann Intern Med. 1992;116:183–9.

    PubMed  CAS  Google Scholar 

  83. De Witte T, Gratwohl A, Van Der Lely N, et al. Recombinant human granulocyte–macrophage colony-stimulating factor accelerates neutrophil and monocyte recovery after allogeneic T-cell-depleted bone marrow transplantation. Blood. 1992;79:1359–65.

    PubMed  Google Scholar 

  84. Gorin NC, Coiffier B, Hayat M, et al. Recombinant human granulocyte–macrophage colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation with unpurged and purged marrow in non-Hodgkin’s lymphoma: a double-blind placebo-controlled trial. Blood. 1992;80:1149–57.

    PubMed  CAS  Google Scholar 

  85. Gulati SC, Bennett CL. Granulocyte–macrophage colony-stimulating factor (GM-CSF) as adjunct therapy in relapsed Hodgkin disease. Ann Intern Med. 1992;116:177–82.

    PubMed  CAS  Google Scholar 

  86. Hiraoka A, Masaoka T, Mizoguchi H, et al. Recombinant human non-glycosylated granulocyte–macrophage colony-stimulating factor in allogeneic bone marrow transplantation: double-blind placebo-controlled phase III clinical trial. Jpn J Clin Oncol. 1994;24:205–11.

    PubMed  CAS  Google Scholar 

  87. Khwaja A, Linch DC, Goldstone AH, et al. Recombinant human granulocyte–macrophage colony-stimulating factor after autologous bone marrow transplantation for malignant lymphoma: a British National Lymphoma Investigation double-blind, placebo-controlled trial. Br J Haematol. 1992;82:317–23.

    Article  PubMed  CAS  Google Scholar 

  88. Link H, Boogaerts MA, Carella AM, et al. A controlled trial of recombinant human granulocyte–macrophage colony-stimulating factor after total body irradiation, high-dose chemotherapy, and autologous bone marrow transplantation for acute lymphoblastic leukemia or malignant lymphoma. Blood. 1992;80:2188–95.

    PubMed  CAS  Google Scholar 

  89. Nemunaitis J, Rabinowe SN, Singer JW, et al. Recombinant granulocyte–macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med. 1991;324:1773–8.

    Article  PubMed  CAS  Google Scholar 

  90. Nemunaitis J, Rosenfeld CS, Ash R, et al. Phase III randomized, double-blind placebo-controlled trial of rhGM-CSF following allogeneic bone marrow transplantation. Bone Marrow Transplant. 1995;15:949–54.

    PubMed  CAS  Google Scholar 

  91. Powles R, Smith C, Milan S, et al. Human recombinant GM-CSF in allogeneic bone-marrow transplantation for leukaemia: double-blind, placebo-controlled trial. Lancet. 1990;336:1417–20.

    Article  PubMed  CAS  Google Scholar 

  92. Dorr RT. Clinical properties of yeast-derived versus Escherichia coli-derived granulocyte–macrophage colony-stimulating factor. Clin Ther. 1993;15:19–29, discussion 18.

    PubMed  CAS  Google Scholar 

  93. Lieschke GJ, Cebon J, Morstyn G. Characterization of the clinical effects after the first dose of bacterially synthesized recombinant human granulocyte–macrophage colony-stimulating factor. Blood. 1989;74:2634–43.

    PubMed  CAS  Google Scholar 

  94. Bunn PA Jr, Crowley J, Kelly K, et al. Chemoradiotherapy with or without granulocyte–macrophage colony-stimulating factor in the treatment of limited-stage small-cell lung cancer: a prospective phase III randomized study of the Southwest Oncology Group. J Clin Oncol. 1995;13:1632–41.

    PubMed  Google Scholar 

  95. Shaffer DW, Smith LS, Burris HA, et al. A randomized phase I trial of chronic oral etoposide with or without granulocyte–macrophage colony-stimulating factor in patients with advanced malignancies. Cancer Res. 1993;53:5929–33.

    PubMed  CAS  Google Scholar 

  96. Hovgaard D, Mortensen BT, Schifter S, et al. Comparative pharmacokinetics of single-dose administration of mammalian and bacterially-derived recombinant human granulocyte–macrophage colony-stimulating factor. Eur J Haematol. 1993;50:32–6.

    Article  PubMed  CAS  Google Scholar 

  97. Petros WP, Rabinowitz J, Stuart AR, et al. Disposition of recombinant human granulocyte–macrophage colony-stimulating factor in patients receiving high-dose chemotherapy and autologous bone marrow support. Blood. 1992;80:1135–40.

    PubMed  CAS  Google Scholar 

  98. Petros WP, Rabinowitz J, Stuart A, et al. Clinical pharmacology of filgrastim following high-dose chemotherapy and autologous bone marrow transplantation. Clin Cancer Res. 1997;3:705–11.

    PubMed  CAS  Google Scholar 

  99. Jenkins JM, Williams D, Deng Y, et al. Phase 1 clinical study of eltrombopag, an oral, nonpeptide thrombopoietin receptor agonist. Blood. 2007;109:4739–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary H. Lyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lyman, G.H. (2010). The Myeloid Growth Factors. In: Lyman, G., Dale, D. (eds) Hematopoietic Growth Factors in Oncology. Cancer Treatment and Research, vol 157. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7073-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7073-2_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7072-5

  • Online ISBN: 978-1-4419-7073-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics