The Efferent Vestibular System

  • Joseph C. Holt
  • Anna Lysakowski
  • Jay M. Goldberg
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 38)


As is the case with most hair-cell organs, the vestibular labyrinth receives a dual innervation. Afferent nerve fibers arise from bipolar cells in the vestibular (Scarpa’s) ganglion. The peripheral process of each ganglion cell gets synaptic inputs from hair cells in one of several discrete organs, and its central process conveys the resulting information, encoded in the spacing of action potentials, to the vestibular nuclei and the cerebellum. In addition, hair cells and afferent nerve terminals are innervated by efferent fibers originating in the brain stem and reaching the periphery by way of the vestibular nerve. This chapter reviews our understanding of the efferent vestibular system (EVS), including its neuroanatomical organization, candidate neurotransmitters, peripheral actions on afferent discharge as revealed by electrical stimulation of EVS pathways, and the underlying cellular (synaptic) and neuro­transmitter mechanisms. To consider possible functions of the EVS, the chapter then describes the vestibular and nonvestibular signals carried by efferent neurons and how these signals might modify the information carried by afferents. Though our emphasis is on the mammalian EVS, results in nonmammalian species are also considered, as these provide insights into efferent function.


Hair Cell Vestibular Nerve Efferent Response Efferent Terminal Vestibular Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the authors’ laboratories is supported by Grants NIDCD DC08981 (JCH), NIDCD DC02521 (AL), and NIDCD DC02508 (JMG). The authors also thank Erika Bruss for providing the animal illustrations used in several of the figures.


  1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29PubMedCrossRefGoogle Scholar
  2. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120PubMedCrossRefGoogle Scholar
  3. Almanza A, Navarrete F, Vega R, Soto E (2007) Modulation of voltage-gated Ca2+ current in vestibular hair cells by nitric oxide. J Neurophysiol 97:1188–1195PubMedCrossRefGoogle Scholar
  4. Anderson AD, Troyanovskaya M, Wackym PA (1997) Differential expression of alpha2–7, alpha9 and beta2–4 nicotinic acetylcholine receptor subunit mRNA in the vestibular end organs and Scarpa’s ganglia of the rat. Brain Res 778:409–413PubMedCrossRefGoogle Scholar
  5. Andrianov GN, Ryzhova IV (1999) Opioid peptides as possible neuromodulators of the afferent synaptic transmission in the frog semicircular canal. Neuroscience 93:801–806PubMedCrossRefGoogle Scholar
  6. Annoni JM, Cochran SL, Precht W (1984) Pharmacology of the vestibular hair cell-afferent fiber synapse in the frog. J Neurosci 4:2106–2116PubMedGoogle Scholar
  7. Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550PubMedGoogle Scholar
  8. Ashmore JF, Russell IJ (1982) Effects of efferent nerve stimulation on hair cells of the frog sacculus. J Physiol 329:25P–26PGoogle Scholar
  9. Aubert A, Norris CH, Guth PS (1994) Influence of ATP and ATP agonists on the physiology of the isolated semicircular canal of the frog (Rana pipiens). Neuroscience 62:963–974PubMedCrossRefGoogle Scholar
  10. Aubert A, Norris CH, Guth PS (1995) Indirect evidence for the presence and physiological role of endogenous extracellular ATP in the semicircular canal. Neuroscience 64:1153–1160PubMedCrossRefGoogle Scholar
  11. Bailey GP, Sewell WF (2000a) Calcitonin gene-related peptide suppresses hair cell responses to mechanical stimulation in the Xenopus lateral line organ. J Neurosci 20:5163–5169PubMedGoogle Scholar
  12. Bailey GP, Sewell WF (2000b) Pharmacological characterization of the CGRP receptor in the lateral line organ of Xenopus laevis. J Assoc Res Otolaryngol 1:82–88PubMedCrossRefGoogle Scholar
  13. Baird RA, Desmadryl G, Fernández C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203PubMedGoogle Scholar
  14. Barbas-Henry HA, Lohman AHM (1988) Primary projections and efferent cells of the VIIIth cranial nerve in the monitor lizard, Varanus exanthematicus. J Comp Neurol 277:234–249PubMedCrossRefGoogle Scholar
  15. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465PubMedCrossRefGoogle Scholar
  16. Behrend O, Schwark C, Kunihiro T, Strupp M (1997) Cyclic GMP inhibits and shifts the activation curve of the delayed-rectifier (I[K1]) of type I mammalian vestibular hair cells. Neuroreport 8:2687–2690PubMedCrossRefGoogle Scholar
  17. Bernard C, Cochran SL, Precht W (1985) Presynaptic actions of cholinergic agents upon the hair cell-afferent fiber synapses in the vestibular labyrinth of the frog. Brain Res 338:225–236PubMedCrossRefGoogle Scholar
  18. Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25:369–390PubMedCrossRefGoogle Scholar
  19. Bobbin RP, Konishi T (1971) Acetylcholine mimics crossed olivocochlear bundle stimulation. Nature 231:222–223Google Scholar
  20. Bobbin RP, Konishi T (1974) Action of cholinergic and anticholinergic drugs at the crossed olivochlear bundle-hair cell junction. Acta Otolaryngol (Stockh) 77:55–65CrossRefGoogle Scholar
  21. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid (B) receptors: structure and function. Pharmacol Rev 54:247–264PubMedCrossRefGoogle Scholar
  22. Boyle R, Highstein SM (1990a) Resting discharge and response dynamics of horizontal semicircular canal afferents in the toadfish, Opsanus tau. J Neurosci 10:1557–1569PubMedGoogle Scholar
  23. Boyle R, Highstein SM (1990b) Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents. J Neurosci 10:1570–1582PubMedGoogle Scholar
  24. Boyle R, Carey JP, Highstein SM (1991) Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurophysiol 66:1504–1521PubMedGoogle Scholar
  25. Boyle RD, Rabbitt RD, Highstein SM (2009) Efferent control of hair cell and afferent responses in the semicircular canals. J Neurophysiol 102:1513–1525PubMedCrossRefGoogle Scholar
  26. Brichta AM, Goldberg JM (1996) Afferent and efferent responses from morphological fiber classes in the turtle posterior crista. Ann N Y Acad Sci 781:183–195PubMedCrossRefGoogle Scholar
  27. Brichta AM, Goldberg JM (2000a) Morphological identification of physiologically characterized afferents innervating the turtle posterior crista. J Neurophysiol 83:1202–1223PubMedGoogle Scholar
  28. Brichta AM, Goldberg JM (2000b) Responses to efferent activation and excitatory response-intensity relations of turtle posterior-crista afferents. J Neurophysiol 83:1224–1242PubMedGoogle Scholar
  29. Brichta AM, Peterson EH (1994) Functional architecture of vestibular primary afferents from the posterior semicircular canal of a turtle, Pseudemys (Trachemys) scripta elegans. J Comp Neurol 344:481–507PubMedCrossRefGoogle Scholar
  30. Brontë-Stewart HM, Lisberger SG (1994) Physiological properties of vestibular primary afferents that mediate motor learning and normal performance of the vestibulo-ocular reflex in monkeys. J Neurosci 14:1290–1308PubMedGoogle Scholar
  31. Brown DA (1988) M currents: an update. Trends Neurosci 11:294–299PubMedCrossRefGoogle Scholar
  32. Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156:1185–1195PubMedCrossRefGoogle Scholar
  33. Carpenter MB, Chang L, Pereira AB, Hersch LB, Bruce G, Wu J-Y (1987) Vestibular and cochlear efferent neurons in the monkey identified by immunocytochemical methods. Brain Res 408:275–280PubMedCrossRefGoogle Scholar
  34. Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290PubMedGoogle Scholar
  35. Chebib M, Johnston GAB (1999) The “ABC” of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26:937–940PubMedCrossRefGoogle Scholar
  36. Chen JW, Eatock RA (2000) Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol 84:139–151PubMedGoogle Scholar
  37. Chi FL, Jiao Y, Liu HJ, Wang J, Shi Y, Barr JJ (2007) Retrograde neuron tracing with microspheres reveals projection of CGRP-immunolabeled vestibular afferent neurons to the vestibular efferent nucleus in the brainstem of rats. Neuroendocrinology 85:131–138PubMedCrossRefGoogle Scholar
  38. Churchill JA, Schuknecht HF, Doran R (1956) Acetylcholinesterase activity in the cochlea. Laryngoscope 66:1–15PubMedCrossRefGoogle Scholar
  39. Claas B, Fritzsch B, Münz H (1981) Common efferents to lateral line and labyrinthine hair cells in aquatic vertebrates. Neurosci Lett 27:231–235PubMedCrossRefGoogle Scholar
  40. Connor JA (1978) Slow repetitive activity from fast conductance changes in neurons. Fed Proc 37:2139–2145PubMedGoogle Scholar
  41. Cooper JR, Bloom FE, Roth RH (2002) The biochemical basis of neuropharmacology. Raven Press, New YorkGoogle Scholar
  42. Cullen KE, Minor LB (2002) Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference. J Neurosci 22(RC226):1–7Google Scholar
  43. Curthoys IS (1982) The response of primary horizontal semicircular canal neurons in the rat and guinea pig to angular acceleration. Exp Brain Res 47:286–294PubMedGoogle Scholar
  44. Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of oculomotor, neural, and oculomotor consequences of unilateral vestibular loss. J Vestib Res 5:67–107PubMedCrossRefGoogle Scholar
  45. Dawkins R, Keller SL, Sewell WF (2005) Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation. J Neurophysiol 93:2541–2551PubMedCrossRefGoogle Scholar
  46. de Robertis ED, Bennett HS (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol 1:47–58CrossRefGoogle Scholar
  47. Dechesne C, Raymond J, Sans A (1984) The efferent vestibular system in the cat: a horseradish peroxidase and fluorescent retrograde tracer study. Neuroscience 11:893–901PubMedCrossRefGoogle Scholar
  48. Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862PubMedCrossRefGoogle Scholar
  49. Derbenev AV, Linn CL, Guth PS (2005) Muscarinic ACh receptor activation causes transmitter release from isolated frog vestibular hair cells. J Neurophysiol 94:3134–3142PubMedCrossRefGoogle Scholar
  50. Desai SS, Dhaliwal J, Lysakowski A (2004) NOS immunochemical staining in calyces in chinchilla vestibular endorgans. Association for Research in Otolaryngology Midwinter Meeting Abstracts 27:853Google Scholar
  51. Desai SS, Ali H, Lysakowski A (2005a) Comparative morphology of rodent vestibular periphery. II. Cristae ampullares. J Neurophysiol 93:267–280PubMedCrossRefGoogle Scholar
  52. Desai SS, Zeh C, Lysakowski A (2005b) Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol 93:251–266PubMedCrossRefGoogle Scholar
  53. Desmadryl G, Dechesne CJ (1992) Calretinin immunoreactivity in chinchilla and guinea pig vestibular end organs characterizes the calyx unit subpopulation. Exp Brain Res 89:105–108PubMedCrossRefGoogle Scholar
  54. Desmedt JE, Monaco P (1961) Mode of action of the efferent olivo-cochlear bundle on the inner ear. Nature 192:1263–1265PubMedCrossRefGoogle Scholar
  55. Dickman JD, Correia MG (1993) Bilateral communication between vestibular labyrinths in pigeons. Neuroscience 57:1097–1108PubMedCrossRefGoogle Scholar
  56. Didier A, Dupont J, Cazals Y (1990) GABA immunoreactivity of calyceal nerve endings in the vestibular system of the guinea pig. Cell Tissue Res 260:415–419PubMedCrossRefGoogle Scholar
  57. Dohlman G, Farkashidy J, Salonna F (1958) Centrifugal nerve fibers to the sensory epithelium of the vestibular labyrinth. J Laryngol 72:984–991Google Scholar
  58. Dowdall MJ, Boyne AF, Whittaker VP (1974) Adenosine triphosphate. A constituent of cholinergic synaptic vesicles. Biochem J 140:1–12PubMedGoogle Scholar
  59. Drescher DG, Kerr TP, Drescher MJ (1999) Autoradiographic demonstration of quinuclidinyl benzilate binding sites in the vestibular organs of the gerbil. Brain Res 845:199–207PubMedCrossRefGoogle Scholar
  60. Drescher DG, Ramakrishnan NA, Drescher MJ, Chun W, Wang X, Myers SF, Green GE, Sadrazodi K, Karadaghy AA, Poopat N, Karpenko AN, Khan KM, Hatfield JS (2004) Cloning and characterization of alpha9 subunits of the nicotinic acetylcholine receptor expressed by saccular hair cells of the rainbow trout (Oncorhynchus mykiss). Neuroscience 127:737–752PubMedCrossRefGoogle Scholar
  61. Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136PubMedCrossRefGoogle Scholar
  62. Elgoyhen AB, Johnson DS, Boutler J, Vetter DE, Heinemann S (1994) α9: an acetylcholine receptor with novel pharmacological properties expressed in rat chochlear hair cells. Cell 79:705–715PubMedCrossRefGoogle Scholar
  63. Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) Alpha10, a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A 98:3501–3506PubMedCrossRefGoogle Scholar
  64. Engström H (1958) On the double innervation of the sensory epithelia of the inner ear. Acta Otolaryngol (Stockh) 49:109–118CrossRefGoogle Scholar
  65. Engström H, Wersäll J (1958) The ultrastructural organization of the organ of Corti and of the vestibular sensory epithelia. Exp Cell Res 5:460–492Google Scholar
  66. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373PubMedGoogle Scholar
  67. Ezure K, Cohen MS, Wilson VJ (1983) Response of cat semicircular canal afferents to sinusoidal polarizing currents: implications for input-output properties of second-order neurons. J Neurophysiol 49:639–648PubMedGoogle Scholar
  68. Favre D, Sans A (1979) Morphological changes in afferent vestibular hair cell synapses during the postnatal development of the cat. J Neurocytol 8:765–775PubMedCrossRefGoogle Scholar
  69. Fernández C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008PubMedGoogle Scholar
  70. Fernández C, Baird RA, Goldberg JM (1988) The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. J Neurophysiol 60:167–181PubMedGoogle Scholar
  71. Fernández C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780PubMedGoogle Scholar
  72. Fernández C, Lysakowski A, Goldberg JM (1995) Hair cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. J Neurophysiol 73:1253–1269PubMedGoogle Scholar
  73. Fex J (1959) Augmentation of cochlear microphonic by stimulation of efferent fibres to the cochlea; preliminary report. Acta Otolaryngol 50:540–541PubMedCrossRefGoogle Scholar
  74. Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibres in cat. Acta Physiol Scand Suppl 189:1–68PubMedGoogle Scholar
  75. Flock Å, Lam DM (1974) Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature 249:142–144PubMedCrossRefGoogle Scholar
  76. Flock Å, Russell IJ (1973) The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota lota. J Physiol 235:591–605PubMedGoogle Scholar
  77. Flock Å, Russell IJ (1976) Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota. J Physiol 257:45–62PubMedGoogle Scholar
  78. Flores A, Soto E, Vega R (2001) Nitric oxide in the afferent synaptic transmission of the axolotl vestibular system. Neuroscience 103:457–464PubMedCrossRefGoogle Scholar
  79. Fontaine B, Klarsfeld A, Hökfelt T, Changeux JP (1986) Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci Lett 71:59–65PubMedCrossRefGoogle Scholar
  80. Fritzsch B (1981) Efferent neurons to the labyrinth of Salamandra salamandra as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 26:191–196PubMedCrossRefGoogle Scholar
  81. Fritzsch B, Crapon De Caprona D (1984) The origin of centrifugal inner ear fibers of Gymnophions (amphibia). A horseradish peroxidase study. Neurosci Lett 45:131–136CrossRefGoogle Scholar
  82. Fritzsch B, Dubuc R, Ohta Y, Grillner S (1989) Efferents to the labyrinth of the river lamprey (Lampetra fluviatilis) as revealed with retrograde tracing techniques. Neurosci Lett 96:241–246PubMedCrossRefGoogle Scholar
  83. Fuchs PA, Murrow BW (1992a) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809PubMedGoogle Scholar
  84. Fuchs PA, Murrow BW (1992b) A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc R Soc Lond B Biol Sci 248:35–40CrossRefGoogle Scholar
  85. Fukuda K, Higashida H, Kubo T, Maeda A, Akiba I, Bujo H, Mishina M, Numa S (1988) Selective coupling with K+ currents of muscarinic acetylcholine receptor subtypes in NG108-15 cells. Nature 335:355–358PubMedCrossRefGoogle Scholar
  86. Gacek RR (1960) Efferent component of the vestibular nerve. In: Rasmussen GL, Windle WF (eds) Neural mechanisms of the auditory and vestibular systems. Charles C. Thomas, Springfield, pp 276–284Google Scholar
  87. Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol (Stockh) 77:92–101CrossRefGoogle Scholar
  88. Gacek RR, Rasmussen GL (1961) Fiber analysis of statoacoustic nerve of guinea pig, cat and monkey. Anat Rec 139:455–463PubMedCrossRefGoogle Scholar
  89. Galambos R (1956) Suppression of the auditory nerve activity by stimulation of efferent fibers to the cochlea. J Neurophysiol 19:424–437PubMedGoogle Scholar
  90. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802PubMedCrossRefGoogle Scholar
  91. Gleisner L, Henriksson NG (1964) Efferent and afferent activity pattern in the vestibular nerve of the frog. Acta Otolaryngol Suppl (Stockh) 192:90–103CrossRefGoogle Scholar
  92. Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297PubMedCrossRefGoogle Scholar
  93. Goldberg JM, Chatlani S (2009) Repetitive discharge in vestibular nerve afferents. Association for Research in Otolaryngology Midwinter Meeting Abstracts 32:1106Google Scholar
  94. Goldberg JM, Fernández C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660PubMedGoogle Scholar
  95. Goldberg JM, Fernández C (1975) Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol (Stockh) 80:101–110CrossRefGoogle Scholar
  96. Goldberg JM, Fernández C (1977) Conduction times and background discharge of vestibular afferents. Brain Res 122:545–550PubMedCrossRefGoogle Scholar
  97. Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025PubMedGoogle Scholar
  98. Goldberg JM, Fernández C, Smith CE (1982) Responses of vestibular-nerve afferents in the squirrel monkey to externally applied galvanic currents. Brain Res 252:156–160PubMedCrossRefGoogle Scholar
  99. Goldberg JM, Smith CE, Fernández C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256PubMedGoogle Scholar
  100. Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990a) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804PubMedGoogle Scholar
  101. Goldberg JM, Lysakowski A, Fernández C (1990b) Morphophysiological and ultrastructural studies in the mammalian cristae ampullares. Hear Res 49:89–102PubMedCrossRefGoogle Scholar
  102. Goldberg JM, Brichta AM, Wackym PW (2000) Efferent vestibular system: anatomy, physiology and neurochemistry. In: Anderson JH, Beitz AJ (eds) Neurochemistry of the vestibular system. CRC Press, Boca Raton, pp 61–94Google Scholar
  103. Guth PS, Norris CH, Guth SL, Quine DB, Williams WH (1986) Cholinomimetics mimic efferent effects on semicircular canal afferent activity in the frog. Acta Otolaryngol 102:194–203PubMedCrossRefGoogle Scholar
  104. Guth PS, Perin P, Norris CH, Valli P (1998) The vestibular hair cells: post-transductional signal processing. Prog Neurobiol 54:193–247PubMedCrossRefGoogle Scholar
  105. Guth PS, Holt JC, Lioudyno M, McIntosh JM, Hendricson AW, Athas GB, Shipon S (2002) The pharmacology of the non–α9/α10 nicotinic receptor of hair cells: clues as to subunit composition. Association for Research in Otolaryngology Midwinter Meeting Abstracts 25:480Google Scholar
  106. Haque A, Angelaki DE, Dickman JD (2004) Spatial tuning and dynamics of vestibular semicircular canal afferents in rhesus monkeys. Exp Brain Res 155:81–90PubMedCrossRefGoogle Scholar
  107. Hartmann R, Klinke R (1980) Efferent activity in the goldfish vestibular nerve and its influence on afferent activity. Pflügers Arch 388:123–128PubMedCrossRefGoogle Scholar
  108. Hernandez CC, Zaika O, Tolstykh GP, Shapiro MS (2008) Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. J Physiol 586:1811–1821PubMedCrossRefGoogle Scholar
  109. Hiel H, Elgoyhen AB, Drescher DG, Morley BJ (1996) Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system. Brain Res 738:347–352PubMedCrossRefGoogle Scholar
  110. Highstein SM (1991) The central nervous system efferent control of the organs of balance and equilibrium. Neurosci Res 12:13–30PubMedCrossRefGoogle Scholar
  111. Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384PubMedGoogle Scholar
  112. Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves in the toadfish, Opsanus tau. J Comp Neurol 243:309–325PubMedCrossRefGoogle Scholar
  113. Hilding D, Wersäll J (1962) Cholinesterase and its relation to the nerve endings in the inner ear. Acta Otolaryngol (Stockh) 55:205–217CrossRefGoogle Scholar
  114. Hillman DE (1969) Light and electron microscopical study of the relationships between the cerebellum and the vestibular organ of the frog. Exp Brain Res 9:1–15PubMedGoogle Scholar
  115. Hoffman LF, Honrubia V (2002) Fiber diameter distributions in the chinchilla’s ampullary nerves. Hear Res 172:37–52PubMedCrossRefGoogle Scholar
  116. Holstein GR, Martinelli GP, Boyle R, Rabbitt RD, Highstein SM (2004a) Ultrastructural observations of efferent terminals in the crista ampullaris of the toadfish, Opsanus tau. Exp Brain Res 157:128–136PubMedCrossRefGoogle Scholar
  117. Holstein GR, Martinelli GP, Henderson SC, Friedrich VL Jr, Rabbitt RD, Highstein SM (2004b) Gamma-aminobutyric acid is present in a spatially discrete subpopulation of hair cells in the crista ampullaris of the toadfish, Opsanus tau. J Comp Neurol 471:1–10PubMedCrossRefGoogle Scholar
  118. Holstein GR, Rabbitt RD, Martinelli GP, Friedrich VL Jr, Boyle RD, Highstein SM (2004c) Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses. Proc Natl Acad Sci U S A 101:15766–15771PubMedCrossRefGoogle Scholar
  119. Holt JC (2008) The effect of efferent stimulation on an afferent’s response to sinusoidal indentation in the turtle posterior crista. Association for Research in Otolaryngology Midwinter Meeting Abstracts 31:1249Google Scholar
  120. Holt JC, Lioudyno M, Athas G, Garcia MM, Perin P, Guth PS (2001) The effect of proteolytic enzymes on the alpha9-nicotinic receptor-mediated response in isolated frog vestibular hair cells. Hear Res 152:25–42PubMedCrossRefGoogle Scholar
  121. Holt JC, Lioudyno M, Guth PS (2003) A pharmacologically distinct nicotinic ACh receptor is found in a subset of frog semicircular canal hair cells. J Neurophysiol 90:525–553CrossRefGoogle Scholar
  122. Holt JC, Lysakowski A, Goldberg JM (2006) Mechanisms of efferent-mediated responses in the turtle posterior crista. J Neurosci 26:13180–13193PubMedCrossRefGoogle Scholar
  123. Holt JC, Chatlani S, Lysakowski A, Goldberg JM (2007) Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista. J Neurophysiol 98:1083–1101PubMedCrossRefGoogle Scholar
  124. Holt JC, Klapczynski M, Price SD, McIntosh JM, Goldberg JM, Lysakowski A (2008) Efferent cholinergic receptors in the turtle posterior crista. Association for Research in Otolaryngology Midwinter Meeting Abstracts 31:1108Google Scholar
  125. Holt JC, Jordan P, Shah A, Barsz K (2010) Efferent-mediated excitation of turtle calyx-bearing afferents does not involve α9/10nAChRs. Association for Research in Otolaryngology Midwinter Meeting Abstracts 33:543Google Scholar
  126. Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor LB (2005) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 93:2777–2786PubMedCrossRefGoogle Scholar
  127. Hurley KM, Gaboyard S, Zhong M, Price SD, Wooltorton JR, Lysakowski A, Eatock RA (2006) M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricle. J Neurosci 26:10253–10269PubMedCrossRefGoogle Scholar
  128. Ireland PE, Farakashidy J (1961) Studies on the efferent innervation of the vestibular end-organs. Trans Am Otol Soc 49:20–30Google Scholar
  129. Ishiyama A, López I, Wackym PA (1994) Subcellular innervation patterns of the calcitonin gene related peptidergic efferent terminals in the chinchilla vestibular periphery. Otolaryngol Head Neck Surg 111:385–395PubMedGoogle Scholar
  130. Iurato S, Luciano L, Pannese E, Reale E (1972) Efferent vestibular fibers in mammals: morphological and histochemical aspects. Prog Brain Res 37:429–443PubMedCrossRefGoogle Scholar
  131. Jordan P, Shah A, Barsz K, Holt JC (2010) Activation of muscarinic ACh receptors underlies efferent-mediated slow excitation in calyx-bearing afferents of the turtle posterior semicircular canal. Association for Research in Otolaryngology Midwinter Meeting Abstracts 33:555Google Scholar
  132. Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24:459–471PubMedCrossRefGoogle Scholar
  133. Kharkovets T, Hardelin J-P, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Nat Acad Sci U S A 97:4333–4338CrossRefGoogle Scholar
  134. Klinke R, Schmidt CL (1968) Efferente Impulse in Nervus vestibularis bei Reizung des kontralateralen Otolithenorgans. Pflügers Arch 304:183–188PubMedCrossRefGoogle Scholar
  135. Klinke R, Schmidt C (1970) Efferent influence on the vestibular organ during active movement of the body. Pflügers Arch 318:325–332PubMedCrossRefGoogle Scholar
  136. Kong WJ, Egg G, Hussl B, Spoendlin H, Schrott-Fischer A (1994) Localization of CHaT-like immunoreactivity in the vestibular endorgans of the rat. Hear Res 75:191–200PubMedCrossRefGoogle Scholar
  137. Kong WJ, Hussl B, Thumfart WF, Schrott-Fischer A (1998) Ultrastructural localization of GABA-like immunoreactivity in the vestibular periphery of the rat. Acta Otolaryngol 118:90–95PubMedCrossRefGoogle Scholar
  138. Lasker DM, Han GC, Park HJ, Minor LB (2008) Rotational responses of vestibular-nerve afferents innervating the semicircular canals in the C57BL/6 mouse. J Assoc Res Otolaryngol 9:334–348PubMedCrossRefGoogle Scholar
  139. Leonard RB, Kevetter GA (2002) Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Res 928:8–17PubMedCrossRefGoogle Scholar
  140. Li C, Zhang YK, Guan ZL, Shum DK, Chan YS (2005) Vestibular afferent innervation in the vestibular efferent nucleus of rats. Neurosci Lett 385:36–40PubMedCrossRefGoogle Scholar
  141. Li GQ, Kevetter GA, Leonard RB, Prusak DJ, Wood TG, Correia MJ (2007) Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells. Neuroscience 146:384–402PubMedCrossRefGoogle Scholar
  142. Lincoln J, Hoyle CHV, Burnstock G (1997) Nitric oxide in health and disease. Cambridge University Press, CambridgeGoogle Scholar
  143. Lindeman HH (1969) Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb Anat Entwicklungsgesch 42:1–113PubMedGoogle Scholar
  144. Lioudyno MI, Verbitsky M, Glowatzki E, Holt JC, Boulter J, Zadina JE, Elgoyhen AB, Guth PS (2002) The alpha9/alpha10-containing nicotinic ACh receptor is directly modulated by opioid peptides, endomorphin-1, and dynorphin B, proposed efferent cotransmitters in the inner ear. Mol Cell Neurosci 20:695–711PubMedCrossRefGoogle Scholar
  145. Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, Parameshwaran-Iyer S, Glowatzki E, Fuchs PA (2004) A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J Neurosci 24:11160–11164PubMedCrossRefGoogle Scholar
  146. Lisberger SG, Pavelko TA (1986) Vestibular signals carried by pathways subserving plasticity of the vestibulo-ocular reflex in monkeys. J Neurosci 6:346–354PubMedGoogle Scholar
  147. Llinás R, Precht W (1969) The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp Brain Res 9:16–29PubMedCrossRefGoogle Scholar
  148. López I, Juiz JM, Altschuler RA, Meza G (1990) Distribution of GABA-like immunoreactivity in guinea pig vestibular cristae ampullaris. Brain Res 530:170–175PubMedCrossRefGoogle Scholar
  149. López I, Wu JY, Meza G (1992) Immunocytochemical evidence for an afferent GABAergic neurotransmission in the guinea pig vestibular system. Brain Res 589:341–348PubMedCrossRefGoogle Scholar
  150. Louie AW, Kimm J (1976) The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Exp Brain Res 24:447–457PubMedCrossRefGoogle Scholar
  151. Luebke AE, Maroni PD, Guth SM, Lysakowski A (2005) Alpha-9 nicotinic acetylcholine receptor immunoreactivity in the rodent vestibular labyrinth. J Comp Neurol 492:323–333PubMedCrossRefGoogle Scholar
  152. Lustig LR, Hiel H, Fuchs PA (1999) Vestibular hair cells of the chick express the nicotinic acetylcholine receptor subunit alpha 9. J Vestib Res 9:359–367PubMedGoogle Scholar
  153. Lysakowski A (1996) Synaptic organization of the crista ampullaris in vertebrates. Ann N Y Acad Sci 781:164–182PubMedCrossRefGoogle Scholar
  154. Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389:419–443PubMedCrossRefGoogle Scholar
  155. Lysakowski A, Goldberg JM (2004) Morphophysiology of the vestibular periphery. In: Highstein SM, Popper A, Fay RR (eds) The vestibular system. Springer, New York, pp 57–152CrossRefGoogle Scholar
  156. Lysakowski A, Goldberg JM (2008) Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). J Comp Neurol 511:47–64PubMedCrossRefGoogle Scholar
  157. Lysakowski A, Singer M (2000) Nitric oxide synthase localized in a subpopulation of vestibular efferents with NADPH diaphorase histochemistry and nitric oxide synthase immunohistochemistry. J Comp Neurol 427:508–521PubMedCrossRefGoogle Scholar
  158. Lysakowski A, Minor LB, Fernández C, Goldberg JM (1995) Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey. J Neurophysiol 73:1270–1281PubMedGoogle Scholar
  159. Lysakowski A, Alonto A, Jacobson L (1999) Peripherin immunoreactivity labels small diameter vestibular “bouton” afferents in rodents. Hear Res 133:149–154PubMedCrossRefGoogle Scholar
  160. Marco J, Lee W, Suarez C, Hoffman L, Honrubia V (1993) Morphologic and quantitative study of the efferent vestibular system in the chinchilla: 3-D reconstruction. Acta Otolaryngol (Stockh) 113:229–234CrossRefGoogle Scholar
  161. Marlinski V, Plotnik M, Goldberg JM (2004) Efferent actions in the chinchilla vestibular labyrinth. J Assoc Res Otolaryngol 5:126–143PubMedGoogle Scholar
  162. Marlinsky VV (1995) The effect of somatosensory stimulation on second-order and efferent vestibular neurons in the decerebrate decerebellate guinea-pig. Neuroscience 69:661–669PubMedCrossRefGoogle Scholar
  163. Matsubara A, Usami S, Fujita S, Shinkawa H (1995) Expression of substance P, CGRP, and GABA in the vestibular periphery, with special reference to species differences. Acta Otolaryngol Suppl 519:248–252PubMedCrossRefGoogle Scholar
  164. Matsuda Y (1996) Localization of choline acetyltransferase and calcitonin gene-related peptide immunoreactivities in the vestibular end-organs of the guinea pig. Osaka City Med J 42:61–76PubMedGoogle Scholar
  165. McCue MP, Guinan JJ Jr (1994) Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat. J Neurosci 14:6071–6083PubMedGoogle Scholar
  166. Meredith GE (1988) Comparative view of the central organization of afferent and efferent circuitry for the inner ear. Acta Biol Hung 39:229–249PubMedGoogle Scholar
  167. Meredith GE, Roberts BL (1987) Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the european eel. J Comp Neurol 265:494–506PubMedCrossRefGoogle Scholar
  168. Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56:237–246PubMedCrossRefGoogle Scholar
  169. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  170. Narins PM, Lewis ER (1984) The vertebrate ear as an exquisite seismic sensor. J Acoust Soc Am 76:1384–1387PubMedCrossRefGoogle Scholar
  171. New HV, Mudge AW (1986) Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323:809–811PubMedCrossRefGoogle Scholar
  172. Nomura Y, Gacek RR, Balogh KJ (1965) Efferent innervation of vestibular labyrinth. Arch Otolaryngol 81:335–339PubMedGoogle Scholar
  173. Ohno K, Takeda N, Yamano M, Matsunaga T, Tohyama M (1991) Coexistence of acetylcholine and calcitonin gene-related peptide in the vestibular efferent neurons in the rat. Brain Res 566:103–107PubMedCrossRefGoogle Scholar
  174. Ohno K, Takeda N, Kiyama H, Kato H, Fujita S, Matsunaga T, Tohyama M (1993) Synaptic contact between vestibular afferent nerve and cholinergic efferent terminal: its putative mediation by nicotinic receptors. Brain Res Mol Brain Res 18:343–346PubMedCrossRefGoogle Scholar
  175. Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595–601PubMedCrossRefGoogle Scholar
  176. Palay SL, Palade GE (1955) The fine structure of neurons. J Biophys Biochem Cytol 1:69–88PubMedCrossRefGoogle Scholar
  177. Pellergrini M, Ceccotti F, Magherini P (1985) The efferent vestibular neurons in the toad (Bufo bufo L.): their location and morphology. A horseradish peroxidase study. Brain Res 344:1–8CrossRefGoogle Scholar
  178. Perachio AA, Correia MJ (1983) Responses of semicircular canal and otolith afferents to small angle static head tilts in the gerbil. Brain Res 280:287–298PubMedCrossRefGoogle Scholar
  179. Perachio AA, Kevetter GA (1989) Identification of vestibular efferent neurons in the gerbil: histochemical and retrograde labelling. Exp Brain Res 78:315–332PubMedCrossRefGoogle Scholar
  180. Pérez C, Limón A, Vega R, Soto E (2009a) The muscarinic inhibition of the potassium M-current modulates the action-potential discharge in the vestibular primary-afferent neurons of the rat. Neuroscience 158:1662–1674PubMedCrossRefGoogle Scholar
  181. Pérez C, Vega R, Soto E (2009b) Phospholipase C-mediated inhibition of the M-potassium current by muscarinic-receptor activation in the vestibular primary-afferent neurons of the rat. Neurosci Lett 468:238–242PubMedCrossRefGoogle Scholar
  182. Plotnik M, Marlinski V, Goldberg JM (2002) Reflections of efferent activity in rotational responses of chinchilla vestibular afferents. J Neurophysiol 88:1234–1244PubMedGoogle Scholar
  183. Plotnik M, Marlinski V, Goldberg JM (2005) Efferent-mediated fluctuations in vestibular nerve discharge: a novel, positive-feedback mechanism of efferent control. J Assoc Res Otolaryngol 6:311–323PubMedGoogle Scholar
  184. Popper P, Wackym PA (2001) Opioid peptides and receptors in the vestibular epithelia in rats. In: 31st SFN meeting, abstract 298.28Google Scholar
  185. Popper P, Cristobal R, Wackym PA (2004) Expression and distribution of mu opioid receptors in the inner ear of the rat. Neuroscience 129:225–233PubMedCrossRefGoogle Scholar
  186. Precht W, Llinás R, Clarke M (1971) Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp Brain Res 13:378–407PubMedCrossRefGoogle Scholar
  187. Prigioni I, Valli P, Casella C (1983) Peripheral organization of the vestibular efferent system in the frog: an electrophysiological study. Brain Res 269:83–90PubMedCrossRefGoogle Scholar
  188. Purcell IM, Perachio AA (1997) Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil. J Neurophysiol 78:3234–3248PubMedGoogle Scholar
  189. Rasmussen GL (1946) The olivary peduncle and other fiber connections of the superior olivary complex. J Comp Neurol 84:141–219PubMedCrossRefGoogle Scholar
  190. Rasmussen GL (1953) Further observations of the efferent cochlear bundle. J Comp Neurol 99:61–74PubMedCrossRefGoogle Scholar
  191. Rasmussen GL, Gacek RR (1958) Concerning the question of the efferent fiber component of the vestibular nerve of the cat. Anat Rec 130:361–362Google Scholar
  192. Rennie KJ (2002) Modulation of the resting potassium current in type I vestibular hair cells by cGMP. In: Berlin CI, Hood LJ, Ricci AJ (eds) Hair cell micromechanics and otoacoustic emissions. Singular Press, Clifton Park, pp 79–89Google Scholar
  193. Rennie KJ, Ashmore JF (1993) Effects of extracellular ATP on hair cells isolated from the guinea-pig semicircular canals. Neurosci Lett 160:185–189PubMedCrossRefGoogle Scholar
  194. Roberts BL, Russell IJ (1972) The activity of lateral line efferent neurones in stationary and swimming dogfish. J Exp Biol 57:433–448Google Scholar
  195. Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135PubMedCrossRefGoogle Scholar
  196. Rossi G, Cortesina G (1965) The “efferent cochlear and vestibular system” in Lepus cuniculus L. Acta Anat 60:362–381PubMedCrossRefGoogle Scholar
  197. Rossi ML, Martini M (1991) Efferent control of posterior canal afferent receptor discharge in the frog labyrinth. Brain Res 555:123–134PubMedCrossRefGoogle Scholar
  198. Rossi ML, Prigioni I, Valli P, Casella C (1980) Activation of the efferent system in the isolated frog labyrinth: effects on the afferent EPSPs and spike discharge recorded from single fibres of the posterior nerve. Brain Res 185:125–137PubMedCrossRefGoogle Scholar
  199. Rossi ML, Martini M, Pelucchi B, Fesce R (1994) Quantal nature of synaptic transmission at the cytoneural junction in the frog labyrinth. J Physiol (Lond) 478:17–35Google Scholar
  200. Russell IJ (1968) Influence of efferent fibres on a receptor. Nature 219:177–178PubMedCrossRefGoogle Scholar
  201. Russell IJ (1971) The role of the lateral-line efferent system in Xenopus laevis. J Exp Biol 54:621–641PubMedGoogle Scholar
  202. Ryan AF, Simmons DM, Watts AG, Swanson LW (1991) Enkephalin mRNA production by cochlear and vestibular efferent neurons in the gerbil brainstem. Exp Brain Res 87:259–267PubMedCrossRefGoogle Scholar
  203. Sadeghi SG, Minor LB, Cullen KE (2007) Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy. J Neurophysiol 97:1503–1514PubMedCrossRefGoogle Scholar
  204. Sadeghi SG, Goldberg JM, Minor LB, Cullen KE (2009) Efferent-mediated responses in vestibular nerve afferents of the alert macaque. J Neurophysiol 101:988–1001PubMedCrossRefGoogle Scholar
  205. Sala O (1965) The efferent vestibular system. Electrophysiological research. Acta Otolaryngol Suppl 197:1–34PubMedGoogle Scholar
  206. Sans A, Highstein SM (1984) New ultrastructural features in the vestibular labyrinth of the toadfish, Opsanus tau. Brain Res 306:191–195CrossRefGoogle Scholar
  207. Schmidt RS (1963) Frog labyrinthine efferent impulses. Acta Otolaryngol (Stockh) 56:51–64CrossRefGoogle Scholar
  208. Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76PubMedCrossRefGoogle Scholar
  209. Schuknecht HF, Churchill JA, Doran R (1959) The localization of acetylcholine-esterase in the cochlea. AMA Arch Otolaryngol 69:549–559PubMedGoogle Scholar
  210. Schwarz DWF, Satoh K, Schwarz IE, Hu K, Fibiger HC (1986) Cholinergic innervation of the rat’s labrinth. Exp Brain Res 64:19–26PubMedCrossRefGoogle Scholar
  211. Schweitzer E (1987) Coordinated release of ATP and ACh from cholinergic synaptosomes and its inhibition by calmodulin antagonists. J Neurosci 7:2948–2956PubMedGoogle Scholar
  212. Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Jentsch TJ, Brown DA (2000) Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J Physiol (Lond) 522(Pt 3):349–355CrossRefGoogle Scholar
  213. Sewell WF, Starr PA (1991) Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ. J Neurophysiol 65:1158–1169PubMedGoogle Scholar
  214. Shah A, Barsz K, Jordan P, Parker D, Holt JC (2010) Efferent actions differentially affect afferent sensitivity to sinusoidal indentation in the turtle posterior semicircular canal. Association for Research in Otolaryngology Midwinter Meeting Abstracts 33:516Google Scholar
  215. Shinder ME, Purcell IM, Kaufman GD, Perachio AA (2001) Vestibular efferent neurons project to the flocculus. Brain Res 889:288–294PubMedCrossRefGoogle Scholar
  216. Silinsky EM (1975) On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J Physiol 247:145–162PubMedGoogle Scholar
  217. Smith CE, Goldberg JM (1986) A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biol Cybern 54:41–51PubMedCrossRefGoogle Scholar
  218. Smith CA, Rasmussen GL (1968) Nerve ending in the maculae and cristae of the chinchilla vestibule, with a special reference to the efferents. In: Graybiel A (ed) The third symposium on the role of the vestibular organs in space exploration. U.S. Government Printing Office, Washington, pp 183–201Google Scholar
  219. Sousa AD, Andrade LR, Salles FT, Pillai AM, Buttermore ED, Bhat MA, Kachar B (2009) The septate junction protein caspr is required for structural support and retention of KCNQ4 at calyceal synapses of vestibular hair cells. J Neurosci 29:3103–3108PubMedCrossRefGoogle Scholar
  220. Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–3678PubMedGoogle Scholar
  221. Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437PubMedGoogle Scholar
  222. Stocker M (2004) Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5:758–770PubMedCrossRefGoogle Scholar
  223. Strutz J (1981) The origin of centrifugal fibers to the inner ear in Caiman crocodilus. A HRP study. Neurosci Lett 27:65–100CrossRefGoogle Scholar
  224. Strutz J (1982a) The origin of efferent fibers to the inner ear in a turtle (Terrapene ornata). A horseradish peroxidase study. Brain Res 244:165–168PubMedCrossRefGoogle Scholar
  225. Strutz J (1982b) The origin of efferent vestibular fibers in the guinea pig. Acta Otolaryngol (Stockh) 94:299–305CrossRefGoogle Scholar
  226. Strutz J, Schmidt CL (1982) Acoustic and vestibular efferent neurons in the chicken (Gallus domesticus). Acta Otolaryngol (Stockh) 94:45–51CrossRefGoogle Scholar
  227. Sugai T, Sugitani M, Ooyama H (1991) Effects of activation of the divergent efferent fibers on the spontaneous activity of vestibular afferent fibers in the toad. Jpn J Physiol 41:217–232PubMedCrossRefGoogle Scholar
  228. Syeda SN, Lysakowski A (2001) P2X2 purinergic receptor localized in the inner ear. Association for Research in Otolaryngology Midwinter Meeting Abstracts 24:19Google Scholar
  229. Takumida M, Anniko M (2002) Nitric oxide in the inner ear. Curr Opin Neurol 15:11–15PubMedCrossRefGoogle Scholar
  230. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8:733–750PubMedCrossRefGoogle Scholar
  231. Tanaka M, Takeda N, Senba E, Tohyama M, Kubo T, Matsunaga T (1989) Localization, origin and fine structure of calcitonin gene related peptide-containing fibers in the vestibular end-organs of the rat. Brain Res 504:31–35PubMedCrossRefGoogle Scholar
  232. Tomko DL, Peterka RJ, Schor RH, O’Leary DP (1981) Response dynamics of horizontal canal afferents in barbiturate-anesthetized cats. J Neurophysiol 45:376–396PubMedGoogle Scholar
  233. Troyanovskaya M, Wackym PA (1998) Evidence for three additional P2X2 purinoceptor isoforms produced by alternative splicing in the adult rat vestibular end-organs. Hear Res 126:201–209PubMedCrossRefGoogle Scholar
  234. Usami S-I, Igarashi M, Thompson G (1987) GABA-like immunoreactivity in the squirrel monkey vestibular endorgans. Brain Res 417:367–370PubMedCrossRefGoogle Scholar
  235. Usami S, Hozawa J, Tazawa M, Igarashi M, Thompson GC, Wu JY, Wenthold RJ (1989) Immunocytochemical study of the GABA system in chicken vestibular endorgans and the vestibular ganglion. Brain Res 503:214–218PubMedCrossRefGoogle Scholar
  236. Vega R, Soto E (2003) Opioid receptors mediate a postsynaptic facilitation and a presynaptic inhibition at the afferent synapse of axolotl vestibular hair cells. Neuroscience 118:75–85PubMedCrossRefGoogle Scholar
  237. Wackym PA, Popper P, Ward PH, Micevych PE (1991) Cell and molecular anatomy of nicotinic acetylcholine receptor subunits and calcitonin gene-related peptide in the rat vestibular system. Otolaryngol Head Neck Surg 105:493–510PubMedGoogle Scholar
  238. Wackym PA, Popper P, López I, Ishiyama A, Micevych PE (1995) Expression of alpha 4 and beta 2 nicotinic acetylcholine receptor subunit mRNA and localization of alpha-bungarotoxin binding proteins in the rat vestibular periphery. Cell Biol Int 19:291–300PubMedCrossRefGoogle Scholar
  239. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int 20:187–192PubMedCrossRefGoogle Scholar
  240. Walsh EJ, McGee J, McFadden SL, Liberman MC (1998) Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J Neurosci 18:3859–3869PubMedGoogle Scholar
  241. Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–182PubMedCrossRefGoogle Scholar
  242. Weisstaub N, Vetter DE, Elgoyhen AB, Katz E (2002) The alpha9alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations. Hear Res 167:122–135PubMedCrossRefGoogle Scholar
  243. Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed) Handbook of sensory physiology, vol. VI. Vestibular system. Part 1. Basic mechanisms. Springer, Berlin, pp 123–170Google Scholar
  244. White JS (1985) Fine structure of vestibular efferent neurons in the albino rat. Soc Neurosci Abstr 11:322Google Scholar
  245. Whitehead MC, Morest DK (1981) Dual populations of efferent and afferent cochlear axons in the chicken. Neuroscience 6:2351–2365PubMedCrossRefGoogle Scholar
  246. Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New YorkGoogle Scholar
  247. Wong LA, Gallagher JP (1991) Pharmacology of nicotinic receptor-mediated inhibition in rat dorsolateral septal neurones. J Physiol 436:325–346PubMedGoogle Scholar
  248. Yagi T, Simpson NE, Markham CH (1977) The relationship of conduction velocity to other physiological properties of the cat’s horizontal canal neurons. Exp Brain Res 30:587–600PubMedCrossRefGoogle Scholar
  249. Yamaguchi K, Ohmori H (1993) Suppression of the slow K+ current by cholinergic agonists in cultured chick cochlear ganglion neurones. J Physiol (Lond) 464:213–228Google Scholar
  250. Yoshida N, Shigemoto T, Sugai T, Ohmori H (1994) The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells. Brain Res 644:90–100PubMedCrossRefGoogle Scholar
  251. Yuhas WA, Fuchs PA (1999) Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells. J Comp Physiol A 185:455–462PubMedCrossRefGoogle Scholar
  252. Zheng XY, Henderson D, McFadden SL, Ding DL, Salvi RJ (1999) Auditory nerve fiber responses following chronic cochlear de-efferentation. J Comp Neurol 406:72–86PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joseph C. Holt
  • Anna Lysakowski
  • Jay M. Goldberg
    • 1
  1. 1.Department of Neurobiology, Pharmacology, and PhysiologyUniversity of ChicagoChicagoUSA

Personalised recommendations