Pharmacology and Neurochemistry of Olivocochlear Efferents

  • William F. Sewell
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 38)


This chapter covers the chemistry and pharmacology of efferent transmission in the cochlea, starting with an overview of the biochemical and biophysical steps following the arrival of an action potential at the peripheral efferent nerve terminal (Sect. 4.1.1). A brief history of advances in understanding the efferent system follows (Sect. 4.1.2). The description of the neurochemistry and pharmacology of efferent action is organized around the sequence of events beginning with the arrival of an action potential at the medial efferent peripheral terminal and ending with the activation of calcium-dependent potassium channels in the outer hair cell (OHC; Sect. 4.2). In Sect. 4.3, other efferent neurotransmitters are covered and, because most of these are associated with the lateral efferent system, it is in this section that much of the knowledge of lateral efferents is presented.


Hair Cell Tyrosine Hydroxylase Nicotinic Receptor Cholinergic Receptor Efferent Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a grant from the NIDCD (R01 DC000767).


  1. Altschuler RA, Hoffman DW, Reeks KA, Fex J (1985a) Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig organ of Corti. Hear Res 17:249–258CrossRefPubMedGoogle Scholar
  2. Altschuler RA, Kachar B, Rubio JA, Parakkal MH, Fex J (1985b) Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea. Brain Res 338:1–11CrossRefPubMedGoogle Scholar
  3. Aran JM, Erre JP, Avan P (1994) Contralateral suppression of transient evoked otoacoustic emissions in guinea-pigs: effects of gentamicin. Br J Audiol 28:267–271CrossRefPubMedGoogle Scholar
  4. Art JJ, Fettiplace R (1984) Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. J Physiol 356:507–523PubMedGoogle Scholar
  5. Augustinsson K-B (1946) Studies on the specificiy of choline esterase in Helix pomatia. Biochem J 40:343–349Google Scholar
  6. Bailey GP, Sewell WF (2000) Calcitonin gene-related peptide suppresses hair cell responses to mechanical stimulation in the Xenopus lateral line organ. J Neurosci 20:5163–5169PubMedGoogle Scholar
  7. Ballestero JA, Plazas PV, Kracun S, Gomez-Casati ME, Taranda J, Rothlin CV, Katz E, Millar NS, Elgoyhen AB (2005) Effects of quinine, quinidine, and chloroquine on alpha9alpha10 nicotinic cholinergic receptors. Mol Pharmacol 68:822–829PubMedGoogle Scholar
  8. Bartolami S, Ripoll C, Planche M, Pujol R (1993) Localisation of functional muscarinic receptors in the rat cochlea: evidence for efferent presynaptic autoreceptors. Brain Res 626:200–209CrossRefPubMedGoogle Scholar
  9. Bergeron AL, Schrader A, Yang D, Osman AA, Simmons DD (2005) The final stage of cholinergic differentiation occurs below inner hair cells during development of the rodent cochlea. J Assoc Res Otolaryngol 6:401–415PubMedGoogle Scholar
  10. Blanchet C, Erostegui C, Sugasawa M, Dulon D (2000) Gentamicin blocks ACh-evoked K+ current in guinea-pig outer hair cells by impairing Ca2+ entry at the cholinergic receptor. J Physiol 525(Pt 3):641–654CrossRefPubMedGoogle Scholar
  11. Bobbin RP, Thompson MH (1978) Effects of putative transmitters on afferent cochlear transmission. Ann Otol Rhinol Laryngol 87:185–190PubMedGoogle Scholar
  12. Cabanillas LA, Luebke AE (2002) CGRP- and cholinergic-containing fibers project to guinea pig outer hair cells. Hear Res 172:14–17CrossRefPubMedGoogle Scholar
  13. Churchill JA, Schuknecht HF, Doran R (1956) Acetylcholinesterase activity in the cochlea. Laryngoscope 66:1–15CrossRefPubMedGoogle Scholar
  14. Comis SD, Guth PS (1974) The release of acetylcholine from the cochlear nucleus upon stimulation of the crossed olivo-cochlear bundle. Neuropharmacology 13:633–641CrossRefPubMedGoogle Scholar
  15. Cooper NP, Guinan JJ Jr (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J Physiol 548:307–312CrossRefPubMedGoogle Scholar
  16. d’Aldin C, Puel JL, Leducq R, Crambes O, Eybalin M, Pujol R (1995) Effects of a dopaminergic agonist in the guinea pig cochlea. Hear Res 90:202–211CrossRefPubMedGoogle Scholar
  17. Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226PubMedGoogle Scholar
  18. Darrow KN, Simons EJ, Dodds L, Liberman MC (2006) Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 498:403–414CrossRefPubMedGoogle Scholar
  19. Dawkins R, Keller SL, Sewell WF (2005) Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation. J Neurophysiol 93:2541–2551CrossRefPubMedGoogle Scholar
  20. de San Z, Martin J, Ballestero J, Katz E, Elgoyhen AB, Fuchs PA (2007) Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells. J Assoc Res Otolaryngol 8:474–483CrossRefGoogle Scholar
  21. Dlugaiczyk J, Singer W, Schick B, Iro H, Becker K, Becker CM, Zimmermann U, Rohbock K, Knipper M (2008) Expression of glycine receptors and gephyrin in the rat cochlea. Histochem Cell Biol 129:513–523CrossRefPubMedGoogle Scholar
  22. Drescher MJ, Drescher DG, Medina JE (1983) Effect of sound stimulation at several levels on concentrations of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear. J Neurochem 41:309–320CrossRefPubMedGoogle Scholar
  23. Drescher DG, Green GE, Khan KM, Hajela K, Beisel KW, Morley BJ, Gupta AK (1993) Analysis of gamma-aminobutyric acid A receptor subunits in the mouse cochlea by means of the polymerase chain reaction. J Neurochem 61:1167–1170CrossRefPubMedGoogle Scholar
  24. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715CrossRefPubMedGoogle Scholar
  25. Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A 98:3501–3506CrossRefPubMedGoogle Scholar
  26. Ellison M, Haberlandt C, Gomez-Casati ME, Watkins M, Elgoyhen AB, McIntosh JM, Olivera BM (2006) Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR. Biochemistry 45:1511–1517CrossRefPubMedGoogle Scholar
  27. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373PubMedGoogle Scholar
  28. Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65:261–270CrossRefPubMedGoogle Scholar
  29. Eybalin M, Cupo A, Pujol R (1985) Met-enkephalin-Arg6-Gly7-Leu8 in the organ of Corti: high performance liquid chromatography and immunoelectron microscopy. Brain Res 331:389–395CrossRefPubMedGoogle Scholar
  30. Eybalin M, Charachon G, Renard N (1993) Dopaminergic lateral efferent innervation of the guinea-pig cochlea: immunoelectron microscopy of catecholamine-synthesizing enzymes and effect of 6-hydroxydopamine. Neuroscience 54:133–142CrossRefPubMedGoogle Scholar
  31. Fex J, Altschuler RA (1981) Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat. Proc Natl Acad Sci U S A 78:1255–1259CrossRefPubMedGoogle Scholar
  32. Fex J, Wenthold RJ (1976) Choline acetyltransferase, glutamate decarboxylase and tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig. Brain Res 109:575–585CrossRefPubMedGoogle Scholar
  33. Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809PubMedGoogle Scholar
  34. Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19:424–437PubMedGoogle Scholar
  35. Galley N, Klinke R, Oertel W, Pause M, Storch WH (1973) The effect of intracochlearly administered acetylcholine-blocking agents on the efferent synapses of the cochlea. Brain Res 64:55–63CrossRefPubMedGoogle Scholar
  36. Gil-Loyzaga P, Pares-Herbute N (1989) HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Brain Res Dev Brain Res 48:157–160CrossRefPubMedGoogle Scholar
  37. Gil-Loyzaga P, Pujol R (1988) Synaptophysin in the developing cochlea. Int J Dev Neurosci 6:155–160CrossRefPubMedGoogle Scholar
  38. Gil-Loyzaga P, Bartolome MV, Vicente-Torres MA (1997) Serotonergic innervation of the organ of Corti of the cat cochlea. Neuroreport 8:3519–3522CrossRefPubMedGoogle Scholar
  39. Gisselsson L (1950) Experimental investigation into the problem of humoral transmission in the cochlea. Acta Otolaryngol 82:9–78Google Scholar
  40. Gitter AH, Zenner HP (1992) Gamma-aminobutyric acid receptor activation of outer hair cells in the guinea pig cochlea. Eur Arch Otorhinolaryngol 249:62–65CrossRefPubMedGoogle Scholar
  41. Glowatzki E, Fuchs PA (2000) Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science (NY) 288:2366–2368Google Scholar
  42. Godfrey DA, Ross CD (1985) Enzymes of acetylcholine metabolism in the rat cochlea. Ann Otol Rhinol Laryngol 94:409–414PubMedGoogle Scholar
  43. Godfrey DA, Krzanowski JJ Jr, Matschinsky FM (1976) Activities of enzymes of the cholinergic systems in the guinea pig cochlea. J Histochem Cytochem 24:470–472PubMedGoogle Scholar
  44. Gomez-Casati ME, Katz E, Glowatzki E, Lioudyno MI, Fuchs P, Elgoyhen AB (2004) Linopirdine blocks alpha9alpha10-containing nicotinic cholinergic receptors of cochlear hair cells. J Assoc Res Otolaryngol 5:261–269CrossRefPubMedGoogle Scholar
  45. Goutman JD, Fuchs PA, Glowatzki E (2005) Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J Physiol 566:49–59CrossRefPubMedGoogle Scholar
  46. Gulley RL, Fex J, Wenthold RJ (1979) Uptake of putative neurotransmitters in the organ of Corti. Acta Otolaryngol 88:177–182CrossRefPubMedGoogle Scholar
  47. Guth PS, Norris CH, Bobbin RP (1976) The pharmacology of transmission in the peripheral auditory system. Pharmacol Rev 28:95–125PubMedGoogle Scholar
  48. Hoffman DW, Zamir N, Rubio JA, Altschuler RA, Fex J (1985) Proenkephalin and prodynorphin related neuropeptides in the cochlea. Hear Res 17:47–50CrossRefPubMedGoogle Scholar
  49. Inoue T, Matsubara A, Maruya S, Yamamoto Y, Namba A, Sasaki A, Shinkawa H (2006) Localization of dopamine receptor subtypes in the rat spiral ganglion. Neurosci Lett 399: 226–229CrossRefPubMedGoogle Scholar
  50. Jasser A, Guth PS (1973) The synthesis of acetylcholine by the olivo-cochlear bundle. J Neurochem 20:45–53CrossRefPubMedGoogle Scholar
  51. Jones N, Fex J, Altschuler RA (1987) Tyrosine hydroxylase immunoreactivity identifies possible catecholaminergic fibers in the organ of Corti. Hear Res 30:33–38CrossRefPubMedGoogle Scholar
  52. Jongkamonwiwat N, Phansuwan-Pujito P, Casalotti SO, Forge A, Dodson H, Govitrapong P (2006) The existence of opioid receptors in the cochlea of guinea pigs. Eur J Neurosci 23: 2701–2711CrossRefPubMedGoogle Scholar
  53. Karadaghy AA, Lasak JM, Chomchai JS, Khan KM, Drescher MJ, Drescher DG (1997) Quantitative analysis of dopamine receptor messages in the mouse cochlea. Brain Res Mol Brain Res 44:151–156CrossRefPubMedGoogle Scholar
  54. Kho ST, Lopez IA, Evans C, Ishiyama A, Ishiyama G (2006) Immunolocalization of orphanin FQ in rat cochlea. Brain Res 1113:146–152CrossRefPubMedGoogle Scholar
  55. Kitajiri M, Yamashita T, Tohyama Y, Kumazawa T, Takeda N, Kawasaki Y, Matsunaga T, Girgis S, Hillyard CJ, MacIntyre I et al (1985) Localization of calcitonin gene-related peptide in the organ of Corti of the rat: an immunohistochemical study. Brain Res 358:394–397CrossRefPubMedGoogle Scholar
  56. Klinke R, Oertel W (1977) Evidence that GABA is not the afferent transmitter in the cochlea. Exp Brain Res 28:311–314PubMedGoogle Scholar
  57. Knipper M, Zimmermann U, Rohbock K, Kopschall I, Zenner HP (1995) Synaptophysin and GAP-43 proteins in efferent fibers of the inner ear during postnatal development. Brain Res Dev Brain Res 89:73–86CrossRefPubMedGoogle Scholar
  58. Kong WJ, Guo CK, Zhang S, Zhang XW, Wang YJ, Li ZW (2006) Fast cholinergic efferent inhibition in guinea pig outer hair cells. Brain Res 1102:103–108CrossRefPubMedGoogle Scholar
  59. Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1992) Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition. Hear Res 61: 106–116CrossRefPubMedGoogle Scholar
  60. Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1993) Contralateral sound suppresses distortion product otoacoustic emissions through cholinergic mechanisms. Hear Res 68:97–106CrossRefPubMedGoogle Scholar
  61. Kurc M, Dodane V, Pinto DS, Kachar B (1998) Presynaptic localization of G protein isoforms in the efferent nerve terminals of the mammalian cochlea. Hear Res 116:1–9CrossRefPubMedGoogle Scholar
  62. Lioudyno MI, Verbitsky M, Holt JC, Elgoyhen AB, Guth PS (2000) Morphine inhibits an alpha9-acetylcholine nicotinic receptor-mediated response by a mechanism which does not involve opioid receptors. Hear Res 149:167–177CrossRefPubMedGoogle Scholar
  63. Lioudyno MI, Verbitsky M, Glowatzki E, Holt JC, Boulter J, Zadina JE, Elgoyhen AB, Guth PS (2002) The alpha9/alpha10-containing nicotinic ACh receptor is directly modulated by opioid peptides, endomorphin-1, and dynorphin B, proposed efferent cotransmitters in the inner ear. Mol Cell Neurosci 20:695–711CrossRefPubMedGoogle Scholar
  64. Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, Parameshwaran-Iyer S, Glowatzki E, Fuchs PA (2004) A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J Neurosci 24:11160–11164CrossRefPubMedGoogle Scholar
  65. Maison SF, Emeson RB, Adams JC, Luebke AE, Liberman MC (2003) Loss of alpha CGRP reduces sound-evoked activity in the cochlear nerve. J Neurophysiol 90:2941–2949CrossRefPubMedGoogle Scholar
  66. Marcotti W, Johnson SL, Kros CJ (2004) A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol 560:691–708CrossRefPubMedGoogle Scholar
  67. Mulders WH, Robertson D (2004) Dopaminergic olivocochlear neurons originate in the high frequency region of the lateral superior olive of guinea pigs. Hear Res 187:122–130CrossRefPubMedGoogle Scholar
  68. Nachmansohn D, Wilson IB (1951) The enzymic hydrolysis and synthesis of acetylcholine. Adv Enzymol Relat Subj Biochem 12:259–339PubMedGoogle Scholar
  69. Nie L, Song H, Chen MF, Chiamvimonvat N, Beisel KW, Yamoah EN, Vazquez AE (2004) Cloning and expression of a small-conductance Ca(2+)-activated K+ channel from the mouse cochlea: coexpression with alpha9/alpha10 acetylcholine receptors. J Neurophysiol 91:1536–1544CrossRefPubMedGoogle Scholar
  70. Niu X, Tahera Y, Canlon B (2007) Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav 92:34–39CrossRefPubMedGoogle Scholar
  71. Oh CK, Drescher MJ, Hatfield JS, Drescher DG (1999) Selective expression of serotonin receptor transcripts in the mammalian cochlea and its subdivisions. Brain Res Mol Brain Res 70:135–140CrossRefPubMedGoogle Scholar
  72. Oliver D, Ludwig J, Reisinger E, Zoellner W, Ruppersberg JP, Fakler B (2001) Memantine inhibits efferent cholinergic transmission in the cochlea by blocking nicotinic acetylcholine receptors of outer hair cells. Mol Pharmacol 60:183–189PubMedGoogle Scholar
  73. Plinkert PK, Mohler H, Zenner HP (1989) A subpopulation of outer hair cells possessing GABA receptors with tonotopic organization. Arch Otorhinolaryngol 246:417–422CrossRefPubMedGoogle Scholar
  74. Plinkert PK, Gitter AH, Mohler H, Zenner HP (1993) Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol 250:351–357CrossRefPubMedGoogle Scholar
  75. Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84:141–219CrossRefPubMedGoogle Scholar
  76. Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol 73:506–514PubMedGoogle Scholar
  77. Rome C, Luo D, Dulon D (1999) Muscarinic receptor-mediated calcium signaling in spiral ganglion neurons of the mammalian cochlea. Brain Res 846:196–203CrossRefPubMedGoogle Scholar
  78. Rothlin CV, Katz E, Verbitsky M, Elgoyhen AB (1999) The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors. Mol Pharmacol 55:248–254PubMedGoogle Scholar
  79. Rothlin CV, Katz E, Verbitsky M, Vetter DE, Heinemann SF, Elgoyhen AB (2000) Block of the alpha9 nicotinic receptor by ototoxic aminoglycosides. Neuropharmacology 39:2525–2532CrossRefPubMedGoogle Scholar
  80. Rothlin CV, Lioudyno MI, Silbering AF, Plazas PV, Casati ME, Katz E, Guth PS, Elgoyhen AB (2003) Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors. Mol Pharmacol 63:1067–1074CrossRefPubMedGoogle Scholar
  81. Ruel J, Nouvian R, Gervais d’Aldin C, Pujol R, Eybalin M, Puel JL (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14:977–986CrossRefPubMedGoogle Scholar
  82. Ruel J, Wang J, Dememes D, Gobaille S, Puel JL, Rebillard G (2006) Dopamine transporter is essential for the maintenance of spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation. J Neurochem 97:190–200CrossRefPubMedGoogle Scholar
  83. Safieddine S, Wenthold RJ (1999) SNARE complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle- and synaptic membrane-associated proteins. Eur J Neurosci 11:803–812CrossRefPubMedGoogle Scholar
  84. Safieddine S, Bartolami S, Wenthold RJ, Eybalin M (1996) Pre- and postsynaptic M3 muscarinic receptor mRNAs in the rodent peripheral auditory system. Brain Res Mol Brain Res 40:127–135PubMedGoogle Scholar
  85. Safieddine S, Prior AM, Eybalin M (1997) Choline acetyltransferase, glutamate decarboxylase, tyrosine hydroxylase, calcitonin gene-related peptide and opioid peptides coexist in lateral efferent neurons of rat and guinea-pig. Eur J Neurosci 9:356–367CrossRefPubMedGoogle Scholar
  86. Sahley TL, Nodar RH (1994) Improvement in auditory function following pentazocine suggests a role for dynorphins in auditory sensitivity. Ear Hear 15:422–431CrossRefPubMedGoogle Scholar
  87. Schwartz IR, Ryan AF (1983) Differential labeling of sensory cell and neural populations in the organ of Corti following amino acid incubations. Hear Res 9:185–200CrossRefPubMedGoogle Scholar
  88. Simmons DD, Bertolotto C, Typpo K, Clay A, Wu M (1999) Differential development of cholinergic-like neurons in the superior olive: a light microscopic study. Anat Embryol 200:585–595CrossRefPubMedGoogle Scholar
  89. Sliwinska-Kowalska M, Parakkal M, Schneider ME, Fex J (1989) CGRP-like immunoreactivity in the guinea pig organ of Corti: a light and electron microscopy study. Hear Res 42:83–95CrossRefPubMedGoogle Scholar
  90. Smith CA, Sjostrand FS (1961) Structure of the nerve endings on the external hair cells of the guinea pig cochlea as studied by serial sections. J Ultrastruct Res 5:523–556CrossRefPubMedGoogle Scholar
  91. Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–3678PubMedGoogle Scholar
  92. Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437PubMedGoogle Scholar
  93. Waka N, Knipper M, Engel J (2003) Localization of the calcium channel subunits Cav1.2 (alpha1C) and Cav2.3 (alpha1E) in the mouse organ of Corti. Histol Histopathol 18:1115–1123PubMedGoogle Scholar
  94. Warr WB, Boche JB, Neely ST (1997) Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems. Hear Res 108:89–111CrossRefPubMedGoogle Scholar
  95. Yao W, Godfrey DA (1998) Immunohistochemical evaluation of cholinergic neurons in the rat superior olivary complex. Microsc Res Tech 41:270–283CrossRefPubMedGoogle Scholar
  96. Yao W, Godfrey DA (1999) Vesicular acetylcholine transporter in the rat cochlear nucleus: an immunohistochemical study. J Histochem Cytochem 47:83–90PubMedGoogle Scholar
  97. Yoshida N, Liberman MC, Brown MC, Sewell WF (1999) Gentamicin blocks both fast and slow effects of olivocochlear activation in anesthetized guinea pigs. J Neurophysiol 82:3168–3174PubMedGoogle Scholar
  98. Yoshida N, Liberman MC, Brown MC, Sewell WF (2001) Fast, but not slow, effects of olivocochlear activation are resistant to apamin. J Neurophysiol 85:84–88PubMedGoogle Scholar
  99. Yuhas WA, Fuchs PA (1999) Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells. J Comp Physiol 185:455–462CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Otology and LaryngologyHarvard Medical SchoolBostonUSA
  2. 2.Eaton Peabody LaboratoryMassachusetts Eye and Ear InfirmaryBostonUSA

Personalised recommendations