Skip to main content

Physiology of the Medial and Lateral Olivocochlear Systems

  • Chapter
  • First Online:
Auditory and Vestibular Efferents

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 38))

  • 1817 Accesses

Abstract

In this chapter we deal with the ways in which the two olivocochlear (OC) efferent systems, the medial (MOC) and lateral (LOC) systems, change the operation of the cochlea and how these changes may benefit hearing. To understand these changes, it is necessary to understand OC anatomy. OC anatomy is dealt with extensively in Brown (Chap. 2). Here we present the anatomy necessary for understanding OC physiology and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 175.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 175.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In small animals such as guinea pigs, coherent reflection emissions are relatively weak (Zurek 1985) with the result that DPOAEs are primarily from the distortion component (see Fahey et al. 2008).

  2. 2.

    In the literature the term “contralateral suppression” is often used to mean the effect of MOC activity elicited by contralateral sound. We avoid this term because it does not distinguish between MOC inhibition elicited by contralateral sound and two-tone suppression produced by acoustic crosstalk from the contralateral to the ipsilateral ear. Instead, we use the term “contralateral inhibition” or “contralateral MOC inhibition”.

References

  • Abdala C, Mishra SK, Williams TL (2009) Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. J Acoust Soc Am 125:1584–1594

    PubMed  PubMed Central  Google Scholar 

  • Aidan D, Lestang P, Avan P, Bonfils P (1997) Characteristics of transient-evoked otoacoustic emissions (TEOES) in neonates. Acta Otolaryngol 117:25–30

    CAS  PubMed  Google Scholar 

  • Aran JM, Pajor AM, de Sauvage RC, Erre JP (2000) Role of the efferent medial olivocochlear system in contralateral masking and binaural interactions: an electrophysiological study in guinea pigs. Audiology 39:311–321

    CAS  PubMed  Google Scholar 

  • Backus BC, Guinan JJ Jr (2004) The efficacy of AM noise for activating the human MOC reflex measured using SFOAEs. Assoc Res Otolaryngol Abstr 27:535

    Google Scholar 

  • Backus BC, Guinan JJ Jr (2006) Time course of the human medial olivocochlear reflex. J Acoust Soc Am 119:2889–2904

    PubMed  Google Scholar 

  • Backus BC, Guinan JJ Jr (2007) Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions. J Assoc Res Otolaryngol 8:484–496

    PubMed  PubMed Central  Google Scholar 

  • Bassim MK, Miller RL, Buss E, Smith DW (2003) Rapid adaptation of the 2f1–f2 DPOAE in humans: binaural and contralateral stimulation effects. Hear Res 182:140–152

    PubMed  Google Scholar 

  • Boyev KP, Liberman MC, Brown MC (2002) Effects of anesthesia on efferent-mediated adaptation of the DPOAE. J Assoc Res Otolaryngol 3:362–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MC (1987) Morphology of labeled efferent fibers in the guinea pig cochlea. J Comp Neurol 260:605–618

    CAS  PubMed  Google Scholar 

  • Brown MC (1989) Morphology and response properties of single olivocochlear fibers in the guinea pig. Hear Res 40:93–110

    CAS  PubMed  Google Scholar 

  • Brown MC (2001) Response adaptation of medial olivocochlear neurons is minimal. J Neurophysiol 86:2381–2392

    CAS  PubMed  Google Scholar 

  • Brown MC (2002) Cochear projections of single medial olivocochlear (MOC) axons in the guinea pig. Asso Res Otolaryngol Abstr 25:310

    Google Scholar 

  • Brown MC, Kujawa SG, Duca ML (1998a) Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise. J Neurophysiol 79:3077–3087

    CAS  PubMed  Google Scholar 

  • Brown MC, Kujawa SG, Liberman MC (1998b) Single olivocochlear neurons in the guinea pig. II. Response plasticity due to noise conditioning. J Neurophysiol 79:3088–3097

    CAS  PubMed  Google Scholar 

  • Brown MC, de Venecia RK, Guinan JJ (2003) Responses of medial olivocochlear neurons: specifying the central pathways of the medial olivocochlear reflex. Exp Brain Res 153:491–498

    CAS  PubMed  Google Scholar 

  • Buño W Jr (1978) Auditory nerve fiber activity influenced by contralateral ear sound stimulation. Exp Neurol 59:62–74

    PubMed  Google Scholar 

  • Cai Y, Geisler CD (1996) Suppression in auditory-nerve fibers of cats using low-side suppressors. II. Effect of spontaneous rates. Hear Res 96:113–125

    CAS  PubMed  Google Scholar 

  • Chays A, Maison S, Robaglia-Schlupp A, Cau P, Broder L, Magnan J (2003) Are we sectioning the cochlear efferent system during vestibular neurotomy? Rev Laryngol Otol Rhinol (Bord) 124:53–58

    CAS  Google Scholar 

  • Chéry-Croze A, Moulin A, Collet L (1993) Effect of contralateral sound stimulation on the distortion product 2f1–f2 in humans: evidence of a frequency specificity. Hear Res 68:53–58

    PubMed  Google Scholar 

  • Cody AR, Johnstone BM (1982) Acoustically evoked activity of single efferent neurons in the guinea pig cochlea. J Acoust Soc Am 72:280–282

    CAS  PubMed  Google Scholar 

  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43:251–262

    CAS  PubMed  Google Scholar 

  • Cooper NP, Guinan JJ Jr (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J Physiol 548:307–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper NP, Guinan JJ Jr (2006a) Efferent-mediated control of basilar membrane motion. J Physiol 576:49–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper NP, Guinan JJ Jr (2006b) The dynamics of medial olivocochlear efferent fast effects on basilar membrane motion. Assoc Res Otolaryngol Abstr 30:273

    Google Scholar 

  • Cooper NP, Kemp DT (2009) Concepts and challenges in the biophysics of hearing. World Scientific, Singapore

    Google Scholar 

  • Cooper NP, Rhode WS (1996) Fast travelling waves, slow travelling waves and their interactions in experimental studies of apical cochlear mechanics. Audit Neurosci 2:289–299

    Google Scholar 

  • Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WH, Sengupta S, He DZ, Zuo J (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:333–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darrow KN, Maison SF, Liberman MC (2006a) Cochlear efferent feedback balances interaural sensitivity. Nat Neurosci 9:1474–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darrow KN, Simons EJ, Dodds L, Liberman MC (2006b) Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 498:403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer J, Thornton AR (2007) Effect of subject task on contralateral suppression of click evoked otoacoustic emissions. Hear Res 233:117–123

    PubMed  Google Scholar 

  • de Boer J, Thornton AR (2008) Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task. J Neurosci 28:4929–4937

    PubMed  Google Scholar 

  • de Venecia RK, Liberman MC, Guinan JJ Jr, Brown MC (2005) Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 487:345–360

    PubMed  PubMed Central  Google Scholar 

  • Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27:4146–4153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desmedt JE (1962) Auditory-evoked potentials from cochlea to cortex as influenced by activation of the efferent olivocochlear bundle. J Acoust Soc Am 34:1478–1496

    Google Scholar 

  • Dolan DF, Nuttall AL, Avinash G (1990) Asynchronous neural activity recorded from the round window. J Acoust Soc Am 87:2621–2627

    CAS  PubMed  Google Scholar 

  • Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102:3587–3596

    CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 98:3501–3506

    CAS  PubMed  Google Scholar 

  • Fahey PF, Stagner BB, Martin GK (2008) Source of level dependent minima in rabbit distortion product otoacoustic emissions. J Acoust Soc Am 124:3694–3707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feeney MP, Keefe DH (2001) Estimating the acoustic reflex threshold from wideband measures of reflectance, admittance, and power. Ear Hear 22:316–332

    CAS  PubMed  Google Scholar 

  • Feeney MP, Keefe DH, Sanford CA (2004) Wideband reflectance measures of the ipsilateral acoustic stapedius reflex threshold. Ear Hear 25:421–430

    PubMed  Google Scholar 

  • Fex J (1959) Augmentation of cochlear microphonic by stimulation of efferent fibers to the cochlea. Acta Otolaryngol 50:540–541

    CAS  PubMed  Google Scholar 

  • Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibers in cat. Acta Physiol Scand 55:2–68

    Google Scholar 

  • Fex J (1965) Auditory activity in the uncrossed centrifugal cochlear fibers in cat. A study of a feedback system, II. Acta Physiol Scand 64:43–57

    CAS  PubMed  Google Scholar 

  • Folsom RC, Owsley RM (1987) N1 action potentials in humans. Influence of simultaneous contralateral stimulation. Acta Otolaryngol (Stockh) 103:262–265

    Google Scholar 

  • Francis NA, Guinan JJ Jr (2010) Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: Implications for cochlear filter bandwidths. Hear Res 267:36–45

    Google Scholar 

  • Fuchs PA (1996) Synaptic transmission at vertebrate hair cells. Curr Opin Neurobiol 6:514–519

    CAS  PubMed  Google Scholar 

  • Galambos R (1956) Suppression of auditory activity by stimulation of efferent fibers to the cochlea. J Neurophysiol 19:424–437

    CAS  PubMed  Google Scholar 

  • Geisler CD (1992) Two-tone suppression by a saturating feedback model of the cochlear partition. Hear Res 63:203–210

    CAS  PubMed  Google Scholar 

  • Geisler CD, Yates GK, Patuzzi RB, Johnston BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256

    CAS  PubMed  Google Scholar 

  • Ghaffari R, Aranyosi AJ, Freeman DM (2007) Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proc Natl Acad Sci USA 104:16510–16515

    CAS  PubMed  Google Scholar 

  • Giard M-H, Collet L, Bouchet P, Pernier J (1994) Auditory selective attention in the human cochlea. Brain Res 633:353–356

    CAS  PubMed  Google Scholar 

  • Gifford ML, Guinan JJ Jr (1983) Effects of crossed-olivocochlear-bundle stimulation on cat auditory nerve fiber responses to tones. J Acoust Soc Am 74:115–123

    CAS  PubMed  Google Scholar 

  • Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194

    CAS  PubMed  Google Scholar 

  • Giraud AL, Collet L, Chery-Croze S, Magnan J, Chays A (1995) Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans. Brain Res 705:15–23

    CAS  PubMed  Google Scholar 

  • Giraud AL, Collet L, Chery-Croze S (1997a) Suppression of otoacoustic emission is unchanged after several minutes of contralateral acoustic stimulation. Hear Res 109:78–82

    CAS  PubMed  Google Scholar 

  • Giraud AL, Garnier S, Micheyl C, Lina G, Chays A, Chery Croze S (1997b) Auditory efferents involved in speech-in-noise intelligibility. Neuroreport 8:1779–1783

    CAS  PubMed  Google Scholar 

  • Groff JA, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–3200

    PubMed  Google Scholar 

  • Guinan JJ Jr (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62

    PubMed  Google Scholar 

  • Guinan JJ Jr (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P, Geisler CD, Matthews JW, Steele CR (eds) Mechanics and biophysics of hearing. Springer, New York, pp 170–177

    Google Scholar 

  • Guinan JJ Jr (1996) The physiology of olivocochlear efferents. In: Dallos PJ, Popper AN, Fay RR (eds) The cochlea. Springer, New York, pp 435–502

    Google Scholar 

  • Guinan JJ Jr (1997) Efferent inhibition as a function of efferent stimulation parameters and sound frequency: testing the OHC-shunt hypothesis. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp 368–375

    Google Scholar 

  • Guinan JJ Jr, Cooper NP (2003) Fast effects of efferent stimulation on basilar membrane motion. In: Gummer AW, Dalhoff E, Nowotny M, Scherer MP (eds) The biophysics of the cochlea: molecules to models. World Scientific, Singapore, pp 245–251

    Google Scholar 

  • Guinan JJ Jr, Cooper NP (2008) Medial olivocochlear efferent inhibition of basilar-membrane responses to clicks: evidence for two modes of cochlear mechanical excitation. J Acoust Soc Am 124:1080–1092

    PubMed  PubMed Central  Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988a) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. Hear Res 33:97–114

    PubMed  Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988b) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. II. Spontaneous rate. Hear Res 33:115–128

    PubMed  Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988c) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hear Res 37:29–46

    PubMed  Google Scholar 

  • Guinan JJ Jr, Stankovic KM (1996) Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. J Acoust Soc Am 100:1680–1690

    PubMed  Google Scholar 

  • Guinan JJ Jr, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex II: locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166

    Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral vs. medial zones of the superior olivary complex. J Comp Neurol 221:358–370

    PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27

    PubMed  Google Scholar 

  • Guinan JJ, Backus BC, Lilaonitkul W, Aharonson V (2003) Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. J Assoc Res Otolaryngol 4:521–540

    PubMed  PubMed Central  Google Scholar 

  • Guinan JJ Jr, Lin T, Cheng H (2005) Medial-olivocochlear-efferent inhibition of the first peak of auditory-nerve responses: evidence for a new motion within the cochlea. J Acoust Soc Am 118:2421–2433

    PubMed  PubMed Central  Google Scholar 

  • Guinan JJ Jr, Lin T, Cheng H, Cooper N (2006) Medial-Olivocochlear-Efferent Effects on Basilar-Membrane and Auditory-Nerve Responses to Clicks: Evidence for a New Motion within the Cochlea. In: Nuttall AL, Ren T, Gillespie PG, Grosh K, de Boer E, eds. Auditory Mechanisms: Processes and Models. World Scientific, Singapore, pp:1–9

    Google Scholar 

  • Gummer M, Yates GK, Johnstone BM (1988) Modulation transfer function of efferent neurons in the guinea pig cochlea. Hear Res 36:41–52

    CAS  PubMed  Google Scholar 

  • He DZ, Jia S, Dallos P (2003) Prestin and the dynamic stiffness of cochlear outer hair cells. J Neurosci 23:9089–9096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henson OW, Xie DH, Keating AW, Henson MM (1995) The effect of contralateral stimulation on cochlear resonance and damping in the mustached bat: the role of the medial efferent system. Hear Res 86:111–124

    PubMed  Google Scholar 

  • Hienz RD, Stiles P, May BJ (1998) Effects of bilateral olivocochlear lesions on vowel formant discrimination in cats. Hear Res 116:10–20

    CAS  PubMed  Google Scholar 

  • Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc R Soc Lond B 244:161–167

    CAS  Google Scholar 

  • Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karavitaki KD, Mountain DC (2007a) Evidence for outer hair cell driven oscillatory fluid flow in the tunnel of corti. Biophys J 92:3284–3293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karavitaki KD, Mountain DC (2007b) Imaging electrically evoked micromechanical motion within the organ of Corti of the excised gerbil cochlea. Biophys J 92:3294–3316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawase T, Delgutte B, Liberman MC (1993) Anti-masking effects of the olivocochlear reflex, II: Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549

    CAS  PubMed  Google Scholar 

  • Keefe DH, Schairer KS, Ellison JC, Fitzpatrick DF, Jesteadt W (2009) Use of stimulus-frequency otoacoustic emissions to investigate efferent and cochlear contributions to temporal overshoot. J Acoust Soc Am 125:1595–1604

    PubMed  PubMed Central  Google Scholar 

  • Khalfa S, Veuillet E, Collet L (1998) Influence of handedness on peripheral auditory asymmetry. Eur J Neurosci 10:2731–2737

    CAS  PubMed  Google Scholar 

  • Khalfa S, Bougeard R, Morand N, Veuillet E, Isnard J, Guenot M, Ryvlin P, Fischer C, Collet L (2001) Evidence of peripheral auditory activity modulation by the auditory cortex in humans. Neuroscience 104:347–358

    CAS  PubMed  Google Scholar 

  • Kim DO, Dorn PA, Neely ST, Gorga MP (2001) Adaptation of distortion product otoacoustic emission in humans. J Assoc Res Otolaryngol 2:31–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura R, Wersäll J (1962) Termination of the olivocochlear bundle in relation to the outer hair cells of the organ of Corti in guinea pig. Acta Otolaryng (Stockh) 55:11–32

    CAS  Google Scholar 

  • Konishi T, Slepian JZ (1971) Effects of the electrical stimulation of the crossed olivocochlear bundle on cochlear potentials recorded with intracochlear electrodes in guinea pigs. J Acoust Soc Am 49:1762–1769

    CAS  PubMed  Google Scholar 

  • Kumar UA, Vanaja CS (2004) Functioning of olivocochlear bundle and speech perception in noise. Ear Hear 25:142–146

    PubMed  Google Scholar 

  • Larsen E, Liberman MC (2009) Slow build-up of cochlear suppression during sustained contralateral noise: central modulation of olivocochlear efferents? Hear Res 256:1–10

    PubMed  PubMed Central  Google Scholar 

  • Le Prell CG, Shore SE, Hughes LF, Bledsoe SC Jr (2003) Disruption of lateral efferent pathways: functional changes in auditory evoked responses. J Assoc Res Otolaryngol 4:276–290

    PubMed  PubMed Central  Google Scholar 

  • Liberman MC (1980) Efferent synapses in the inner hair cell area of the cat cochlea: An electron microscopic study of serial sections. Hear Res 3:189–204

    CAS  PubMed  Google Scholar 

  • Liberman MC (1988a) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60:1779–1798

    CAS  PubMed  Google Scholar 

  • Liberman MC (1988b) Physiology of cochlear efferent and afferent neurons: direct comparisons in the same animal. Hear Res 34:179–192

    CAS  PubMed  Google Scholar 

  • Liberman MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear Res 38:47–56

    CAS  PubMed  Google Scholar 

  • Liberman MC (1990) Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear Res 49:209–224

    CAS  PubMed  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36

    CAS  PubMed  Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16:75–90

    CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460

    CAS  PubMed  Google Scholar 

  • Liberman MC, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1–f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584

    CAS  PubMed  Google Scholar 

  • Lilaonitkul W, Guinan JJ Jr (2009a) Reflex control of the human inner ear: a half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking. J Neurophysiol 101:1394–1406

    PubMed  Google Scholar 

  • Lilaonitkul W, Guinan JJ Jr (2009b) Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths. J Assoc Res Otolaryngol 10:459–470

    PubMed  PubMed Central  Google Scholar 

  • Lima da Costa DL, Chibois A, Erre JP, Blanchet C, de Sauvage RC, Aran JM (1997) Fast, slow, and steady-state effects of contralateral acoustic activation of the medial olivocochlear efferent system in awake guinea pigs: action of gentamicin. J Neurophysiol 78:1826–1836

    Google Scholar 

  • Lin T, Guinan JJ Jr (2000) Auditory-nerve-fiber responses to high-level clicks: interference patterns indicate that excitation is due to the combination of multiple drives. J Acoust Soc Am 107:2615–2630

    CAS  PubMed  Google Scholar 

  • Lin T, Guinan JJ Jr (2004) Time-frequency analysis of auditory-nerve-fiber and basilar-membrane click responses reveal glide irregularities and non-characteristic-frequency skirts. J Acoust Soc Am 116:405–416

    PubMed  Google Scholar 

  • Lu TK, Zhak S, Dallos P, Sarpeshkar R (2006) Fast cochlear amplification with slow outer hair cells. Hear Res 214:45–67

    PubMed  Google Scholar 

  • Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20:4701–4707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maison S, Micheyl C, Collet L (1999) Sinusoidal amplitude modulation alters contralateral noise suppression of evoked otoacoustic emissions in humans. Neuroscience 91:133–138

    CAS  PubMed  Google Scholar 

  • Maison S, Micheyl C, Andeol G, Gallego S, Collet L (2000) Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hear Res 140:111–125

    CAS  PubMed  Google Scholar 

  • Maison S, Micheyl C, Collet L (2001) Influence of focused auditory attention on cochlear activity in humans. Psychophysiology 38:35–40

    CAS  PubMed  Google Scholar 

  • Maison SF, Adams JC, Liberman MC (2003) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J Comp Neurol 455:406–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maison SF, Vetter DE, Liberman MC (2007) A novel effect of cochlear efferents: in vivo response enhancement does not require alpha9 cholinergic receptors. J Neurophysiol 97:3269–3278

    CAS  PubMed  Google Scholar 

  • May BJ, McQuone SJ, Lavoie A (1995) Effects of olivocochlear lesions on intensity discrimination in cats. Assoc Res Otolaryngol Abstr 18:146

    Google Scholar 

  • May BJ, Prosen CA, Weiss D, Vetter D (2002) Behavioral investigation of some possible effects of the central olivocochlear pathways in transgenic mice. Hear Res 171:142–157

    PubMed  Google Scholar 

  • May BJ, Budelis J, Niparko JK (2004) Behavioral studies of the olivocochlear efferent system: learning to listen in noise. Arch Otolaryngol Head Neck Surg 130:660–664

    PubMed  Google Scholar 

  • Micheyl C, Collet L (1996) Involvement of the olivocochlear bundle in the detection of tones in noise. J Acoust Soc Am 99:1064–1610

    Google Scholar 

  • Micheyl C, Perrot X, Collet L (1997) Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans. Behav Neurosci 111:801–807

    CAS  PubMed  Google Scholar 

  • Michie PT, LePage EL, Solowlij N, Haller M, Terry L (1996) Evoked otoacoustic emissions and auditory selective attention. Hear Res 98:54–67

    CAS  PubMed  Google Scholar 

  • Morand N, Bouvard S, Ryvlin P, Mauguiere F, Fischer C, Collet L, Veuillet E (2001) Asymmetrical localization of benzodiazepine receptors in the human auditory cortex. Acta Otolaryngol 121:293–296

    CAS  PubMed  Google Scholar 

  • Morand-Villeneuve N, Veuillet E, Perrot X, Lemoine P, Gagnieu MC, Sebert P, Durrant JD, Collet L (2005) Lateralization of the effects of the benzodiazepine drug oxazepam on medial olivocochlear system activity in humans. Hear Res 208:101–106

    CAS  PubMed  Google Scholar 

  • Morlet T, Goforth L, Hood LJ, Ferber C, Duclaux R, Berlin CI (1999) Development of human cochlear active mechanism asymmetry: involvement of the medial olivocochlear system? Hear Res 134:153–162

    CAS  PubMed  Google Scholar 

  • Moulin A, Collet L, Duclaux R (1993) Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 65:193–210

    CAS  PubMed  Google Scholar 

  • Mountain DC (1998) Modal analysis: a new paradigm for cochlear mechanics. Assoc Res Otolaryngol Abstr 21:61

    Google Scholar 

  • Mukari SZ, Mamat WH (2008) Medial olivocochlear functioning and speech perception in noise in older adults. Audiol Neurootol 13:328–334

    PubMed  Google Scholar 

  • Muller J, Janssen T, Heppelmann G, Wagner W (2005) Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans. J Acoust Soc Am 118:3747–3756

    PubMed  Google Scholar 

  • Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norman M, Thornton ARD (1993) Frequency analysis of the contralateral suppression of evoked otoacoustic emissions by narrow-band noise. Br J Audiol 27:281–289

    CAS  PubMed  Google Scholar 

  • Nowotny M, Gummer AW (2006) Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci USA 103:2120–2125

    CAS  PubMed  Google Scholar 

  • Perrot X, Micheyl C, Khalfa S, Collet L (1999) Stronger bilateral efferent influences on cochlear biomechanical activity in musicians than in non-musicians. Neurosci Lett 262:167–170

    CAS  PubMed  Google Scholar 

  • Pfalz RKJ (1969) Absence of a function for the crossed olivocochlear bundle under physiological conditions. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 193:89–100

    CAS  PubMed  Google Scholar 

  • Puria S, Guinan JJ Jr, Liberman MC (1996) Olivocochlear reflex assays: effects of contralateral sound on compound action potentials vs. ear-canal distortion products. J Acoust Soc Am 99:500–507

    CAS  PubMed  Google Scholar 

  • Rajan R (1988) Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophysiol 60:549–568

    CAS  PubMed  Google Scholar 

  • Rajan R (2000) Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound. J Neurosci 20:6684–6693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Recio A, Rich NC, Narayan SS, Ruggero MA (1998) Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 103:1972–1989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol 73:506–514

    CAS  PubMed  Google Scholar 

  • Ren T, Nuttall AL (2001) Recording depth of the heterodyne laser interferometer for cochlear vibration measurement. J Acoust Soc Am 109:826–829

    CAS  PubMed  Google Scholar 

  • Rhode WS (2007) Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2792–2804

    PubMed  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121

    CAS  PubMed  Google Scholar 

  • Robertson D (1985) Brainstem location of efferent neurons projecting to the guinea pig cochlea. Hear Res 20:79–84

    CAS  PubMed  Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurons in the guinea pig cochlea. Hear Res 20:63–77

    CAS  PubMed  Google Scholar 

  • Robertson D, Gummer M (1988) Physiology of cochlear efferents in the mammal. In: Syka J, Masterton RB (eds) Auditory pathways: structure and function. Plenum, New York, pp 269–278

    Google Scholar 

  • Robertson D, Anderson C-J, Cole KS (1987) Segregation of efferent projections to different turns of the guinea pig cochlea. Hear Res 25:69–76

    CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruel J, Nouvian R, Gervais d’Aldin C, Pujol R, Eybalin M, Puel JL (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14:977–986

    CAS  PubMed  Google Scholar 

  • Russell IJ, Murugasu E (1997) Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 102:1734–1738

    CAS  PubMed  Google Scholar 

  • Ryan S, Kemp DT (1996) The influence of evoking stimulus level on the neural suppression of transient evoked otoacoustic emissions. Hear Res 94:140–147

    CAS  PubMed  Google Scholar 

  • Ryan S, Kemp DT, Hinchcliffe R (1991) The influence of contralateral acoustic stimulation on click-evoked otoacoustic emission in humans. Br J Audiol 25:391–397

    CAS  PubMed  Google Scholar 

  • Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–3110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf B, Magnan J, Chays A (1997) On the role of the olivocochlear bundle in hearing: 16 case studies. Hear Res 103:101–122

    CAS  PubMed  Google Scholar 

  • Shera CA (2001) Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. J Acoust Soc Am 109:2023–2034

    CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798

    CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr (2007) Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. J Acoust Soc Am 121:1003–1016

    PubMed  Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182

    CAS  PubMed  Google Scholar 

  • Sininger YS, Cone-Wesson B (2004) Asymmetric cochlear processing mimics hemispheric specialization. Science 305:1581

    CAS  PubMed  Google Scholar 

  • Smith CA (1961) Innervation pattern of the cochlea. Ann Oto Rhinol Laryngol 70:504–527

    Google Scholar 

  • Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of olivocochlear stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–3678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar TS, Brown MC, Sewell WF (1997) Unique post-synaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two different time scales. J Neurosci 17:428–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stankovic KM, Guinan JJ Jr (1999) Medial efferent effects on auditory-nerve responses to tail-frequency tones I: rate reduction. J Acoust Soc Am 106:857–869

    CAS  PubMed  Google Scholar 

  • Strickland EA (2008) The relationship between precursor level and the temporal effect. J Acoust Soc Am 123:946–954

    PubMed  PubMed Central  Google Scholar 

  • Strickland EA, Krishnan LA (2005) The temporal effect in listeners with mild to moderate cochlear hearing impairment. J Acoust Soc Am 118:3211–3217

    PubMed  Google Scholar 

  • Tan MN, Robertson D, Hammond GR (2008) Separate contributions of enhanced and suppressed sensitivity to the auditory attentional filter. Hear Res 241:18–25

    PubMed  Google Scholar 

  • Teas DC, Konishi T, Nielsen DW (1972) Electrophysiological studies on the spatial distribution of the crossed olivocochlear bundle along the guinea pig cochlea. J Acoust Soc Am 51:1256–1264

    CAS  PubMed  Google Scholar 

  • Thiers FA, Burgess BJ, Nadol JB (2002) Reciprocal innervation of outer hair cells in a human infant. J Assoc Res Otolaryngol 3:269–278

    PubMed  PubMed Central  Google Scholar 

  • Thiers FA, Nadol JB Jr, Liberman MC (2008) Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea. J Assoc Res Otolaryngol 9:477–489

    PubMed  PubMed Central  Google Scholar 

  • Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303:267–285

    CAS  PubMed  Google Scholar 

  • Thompson S, Abdelrazeq S, Long GR, Henin S (2009) Differential effects of efferent stimulation by contralateral bandpass noise on the two major components of distortion product otoacoustic emissions. Assoc Res Otolaryngol Abstr 32:244

    Google Scholar 

  • Veuillet E, Collet L, Duclaux R (1991) Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J Neurophysiol 65:724–735

    CAS  PubMed  Google Scholar 

  • Veuillet E, Duverdy-Bertholon F, Collet L (1996) Effect of contralateral acoustic stimulation on the growth of click-evoked otoacoustic emissions in humans. Hear Res 93:128–135

    CAS  PubMed  Google Scholar 

  • Veuillet E, Magnan A, Ecalle J, Thai-Van H, Collet L (2007) Auditory processing disorder in children with reading disabilities: effect of audiovisual training. Brain 130:2915–2928

    PubMed  Google Scholar 

  • Wagner W, Heppelmann G, Muller J, Janssen T, Zenner HP (2007) Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Hear Res 223:83–92

    CAS  PubMed  Google Scholar 

  • Wagner W, Frey K, Heppelmann G, Plontke SK, Zenner HP (2008) Speech-in-noise intelligibility does not correlate with efferent olivocochlear reflex in humans with normal hearing. Acta Otolaryngol 128:53–60

    PubMed  Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–182

    CAS  PubMed  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) Mammalian auditory pathway: neuroanatomy. Springer, New York, pp 410–448

    Google Scholar 

  • Warr WB, Boche JE (2003) Diversity of axonal ramifications belonging to single lateral and medial olivocochlear neurons. Exp Brain Res 153:499–513

    PubMed  Google Scholar 

  • Warr WB, Guinan JJ Jr (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155

    CAS  PubMed  Google Scholar 

  • Warr WB, Beck Boche JE, Neely ST (1997) Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems. Hear Res 108:89–111

    CAS  PubMed  Google Scholar 

  • Warren EH III, Liberman MC (1989a) Effects of contralateral sound on auditory-nerve responses. I. Contributions of cochlear efferents. Hear Res 37:89–104

    PubMed  Google Scholar 

  • Warren EH III, Liberman MC (1989b) Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hear Res 37:105–122

    PubMed  Google Scholar 

  • Wiederhold ML (1970) Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve-fiber responses to tone bursts. J Acoust Soc Am 48:966–977

    CAS  PubMed  Google Scholar 

  • Wiederhold ML, Peake WT (1966) Efferent inhibition of auditory nerve responses: dependence on acoustic stimulus parameters. J Acoust Soc Am 40:1427–1430

    CAS  PubMed  Google Scholar 

  • Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021

    CAS  PubMed  Google Scholar 

  • Ye Y, Machado DG, Kim DO (2000) Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. J Comp Neurol 420:127–138

    CAS  PubMed  Google Scholar 

  • Yoshida N, Liberman MC, Brown MC, Sewell WF (1999) Gentamicin blocks both fast and slow effects of olivocochlear activation in anesthetized guinea pigs. J Neurophysiol 82:3168–3174

    CAS  PubMed  Google Scholar 

  • Zeng F-G, Shannon RV (1994) Loudness-coding mechanisms inferred from electric stimulation of the human auditory system. Science 264:564–566

    CAS  PubMed  Google Scholar 

  • Zeng F, Martino KM, Linthicum FH, Soli SD (2000) Auditory perception in vestibular neurectomy subjects. Hear Res 142:102–112

    CAS  PubMed  Google Scholar 

  • Zurek PM (1985) Acoustic emissions from the ear: a summary of results from humans and animals. J Acoust Soc Am 78:340–344

    CAS  PubMed  Google Scholar 

  • Zwicker E (1965) Temporal effects in simultaneous masking by white-noise bursts. J Acoust Soc Am 37:653–663

    Google Scholar 

  • Zyl AV, Swanepoel DW, Hall JW III (2009) Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions. Hear Res 254:77–81

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH NIDCD RO1 000235 and RO1 005977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Guinan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guinan, J.J. (2011). Physiology of the Medial and Lateral Olivocochlear Systems. In: Ryugo, D., Fay, R. (eds) Auditory and Vestibular Efferents. Springer Handbook of Auditory Research, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7070-1_3

Download citation

Publish with us

Policies and ethics