Skip to main content

Corticofugal Modulation and Beyond for Auditory Signal Processing and Plasticity

  • Chapter
  • First Online:
Book cover Auditory and Vestibular Efferents

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 38))

Abstract

The auditory system consists of the ascending and descending (corticofugal) ­systems. The corticofugal system forms multiple feedback loops with the ascending system, so that the neural mechanisms for auditory signal processing cannot be fully understood without the exploration of the function of the corticofugal system. Corticofugal modulation (changes in response properties evoked by the corticofugal system) of subcortical neurons for auditory signal processing is one of the most important functions of the auditory cortex in the cerebrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitkin LM, Webster WR (1972) Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. J Neurophysiol 35:365–380

    CAS  PubMed  Google Scholar 

  • Amato G, La Grutta V, Enia F (1969) The control exerted by the auditory cortex on the activity of the medial geniculate body and inferior colliculus. Arch Sci Biol (Bologna) 53:291–313

    CAS  Google Scholar 

  • Andersen P, Junge K, Sveen O (1972) Cortico-fugal facilitation of thalamic transmission. Brain Behav Evol 6:170–184

    CAS  PubMed  Google Scholar 

  • Bakin JS, Weinberger NM (1996) Induction of physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci USA 93:11219–11224

    CAS  PubMed  Google Scholar 

  • Bakin JS, Lepan B, Weinberger NM (1992) Sensitization induced receptive field plasticity in the auditory cortex is independent of CS-modality. Brain Res 577:226–235

    CAS  PubMed  Google Scholar 

  • Bjordahl TS, Dimyan MA, Weinberger NM (1998) Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behav Neurosci 112:467–479

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98:261–274

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98:275–286

    CAS  PubMed  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3:2350–2364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264:847–850

    CAS  PubMed  Google Scholar 

  • Chowdhury SA, Suga N (2000) Reorganization of the tonotopic map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J Neurophysiol 83:1856–1863

    CAS  PubMed  Google Scholar 

  • Covey E, Casseday JH (1999) Timing in the auditory system of the bat. Annu Rev Physiol 61:457–476

    CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Edeline JM, Weinberger NM (1992) Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behav Neurosci 106:471–483

    CAS  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    CAS  PubMed  Google Scholar 

  • Edeline JM, Weinberger NM (1991) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav Neurosci 105:154–175

    CAS  PubMed  Google Scholar 

  • Edeline JM, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106:81–105

    CAS  PubMed  Google Scholar 

  • Edeline JM, Hars B, Hennevin E, Cotillon N (2002) Muscimol diffusion after intracerebral microinjections: a reevaluation based on electrophysiological and autoradiographic quantifications. Neurobiol Learn Mem 78:100–124

    PubMed  Google Scholar 

  • Ehrlich D, Casseday JH, Covey E (1997) Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Neurophysiol 77:2360–2372

    CAS  PubMed  Google Scholar 

  • Fitzpatrick DC, Olsen JF, Suga N (1998) Connections among functional areas in the mustached bat auditory cortex. J Comp Neurol 391:366–396

    CAS  PubMed  Google Scholar 

  • Galazyuk AV, Feng AS (1997) Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J Comp Physiol A 180:301–311

    CAS  PubMed  Google Scholar 

  • Galazyuk AV, Lin W, Llano D, Feng AS (2005) Leading inhibition to neural oscillation is important for time-domain processing in the auditory midbrain. J Neurophysiol 94:314–326

    PubMed  Google Scholar 

  • Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain tonotopic map in bat auditory system. Proc Natl Acad Sci USA 95:12663–12670

    CAS  PubMed  Google Scholar 

  • Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc Natl Acad Sci USA 97:8081–8086

    CAS  PubMed  Google Scholar 

  • Goldberg RL, Henson OW Jr (1998) Changes in cochlear mechanics during vocalization: evidence for a phasic medial efferent effect. Hear Res 122:71–81

    CAS  PubMed  Google Scholar 

  • Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    CAS  PubMed  Google Scholar 

  • Harrison RV, Ibrahim D, Stanton SG, Mount RJ (1996) Reorganization of tonotopic maps in chinchilla auditory midbrain after long-term basal cochlear lesions induced at birth. In: Salvi RJ, Hendersen D, Fiorino F, Colletti V (eds) Auditory system plasticity and regeneration. Thieme, New York, pp 238–255

    Google Scholar 

  • Irvine DRF, Rajan R (1996) Injury- and use-related plasticity in the primary sensory cortex of adult mammals: possible relationship to perceptual learning. Clin Exp Pharmacol Physiol 23:939–947

    CAS  PubMed  Google Scholar 

  • Jafari MR, Zhang Y, Yan J (2007) Multiparametric changes in the receptive field of cortical auditory neurons induced by thalamic activation in the mouse. Cereb Cortex 17:71–80

    PubMed  Google Scholar 

  • Jen PH, Wu CH (2006) Duration selectivity organization in the inferior colliculus of the big brown bat, Eptesicus fuscus. Brain Res 1108:76–87

    CAS  PubMed  Google Scholar 

  • Jen PH, Zhou X (2003) Corticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 184:91–106

    PubMed  Google Scholar 

  • Jen PH, Chen QC, Sun XD (1998) Corticofugal regulation of auditory sensitivity in the bat inferior colliculus. J Comp Physiol A 183:683–697

    CAS  PubMed  Google Scholar 

  • Jen PH, Zhou X, Zhang J, Chen QC, Sun X (2002) Brief and short-term corticofugal modulation of acoustic signal processing in the bat midbrain. Hear Res 168:196–207

    PubMed  Google Scholar 

  • Ji W, Suga N (2003) Development of reorganization of the auditory cortex caused by fear conditioning: effect of atropine. J Neurophysiol 90:1904–1909

    PubMed  Google Scholar 

  • Ji W, Suga N (2007) Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. J Neurosci 27:4910–4918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji W, Suga N (2008) Tone-specific and nonspecific plasticity of the auditory cortex elicited by pseudoconditioning: role of acetylcholine receptors and the somatosensory cortex. J Neurophysiol 100:1384–1396

    PubMed  PubMed Central  Google Scholar 

  • Ji W, Suga N (2009) Tone-specific and nonspecific plasticity of inferior colliculus elicited by pseudoconditioning: role of acetylcholine and auditory and somatosensory cortex. J Neurophysiol 102:941–952

    PubMed  PubMed Central  Google Scholar 

  • Ji W, Gao E, Suga N (2001) Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J Neurophysiol 86:211–225

    CAS  PubMed  Google Scholar 

  • Ji W, Suga N, Gao E (2005) Effects of agonists and antagonists of NMDA and ACh receptors on plasticity of bat auditory system elicited by fear conditioning. J Neurophysiol 94:1199–1211

    CAS  PubMed  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    CAS  PubMed  Google Scholar 

  • Klug A, Khan A, Burger RM, Bauer EE, Hurley LM, Yang L, Grothe B, Halvorsen MB, Park TJ (2000) Latency as a function of intensity in auditory neurons: influences of central processing. Hear Res 148:107–123

    CAS  PubMed  Google Scholar 

  • Lanuza E, Nader K, Ledoux JE (2004) Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience 125:305–315

    CAS  PubMed  Google Scholar 

  • LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79

    CAS  PubMed  Google Scholar 

  • Liu W, Suga N (1997) Binaural and commissural organization of the primary auditory cortex of the mustached bat. J Comp Physiol A 181:599–605

    CAS  PubMed  Google Scholar 

  • Luo F, Wang Q, Kashani A, Yan J (2008) Corticofugal modulation of initial sound processing in the brain. J Neurosci 28:11615–11621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Suga N (2001a) Plasticity of bat’s central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices. J Neurophysiol 85:1078–1087

    CAS  PubMed  Google Scholar 

  • Ma X, Suga N (2001b) Corticofugal modulation of duration-tuned neurons in the midbrain auditory nucleus in bats. Proc Natl Acad Sci USA 98:14060–14065

    CAS  PubMed  Google Scholar 

  • Ma X, Suga N (2003) Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. J Neurophysiol 89:90–103

    PubMed  Google Scholar 

  • Ma X, Suga N (2004) Lateral inhibition for center-surround reorganization of the tonotopic map of bat auditory cortex. J Neurophysiol 92:3192–3199

    PubMed  Google Scholar 

  • Ma X, Suga N (2005) Long-term cortical plasticity evoked by electric stimulation and acetylcholine applied to the auditory cortex. Proc Natl Acad Sci USA 102:9335–9340

    CAS  PubMed  Google Scholar 

  • Ma X, Suga N (2007) Multiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain. J Neurophysiol 97:3722–3730

    PubMed  Google Scholar 

  • Ma X, Suga N (2008) Corticofugal modulation of the paradoxical latency shifts of inferior collicular neurons. J Neurophysiol 100:1127–1134

    PubMed  PubMed Central  Google Scholar 

  • Ma X, Suga N (2009) Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. J Neurosci 29:4888–4896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magoun HW (1963) The waking brain. Charles C Thomas, Springfield

    Google Scholar 

  • Manabe T, Suga N, Ostwald J (1978) Aural representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 200:339–342

    CAS  PubMed  Google Scholar 

  • Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852

    CAS  PubMed  Google Scholar 

  • Maren S, Yap SA, Goosens KA (2001) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J Neurosci 21:RC135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massopust LC Jr, Ordy JM (1962) Auditory organization of the inferior colliculi in the cat. Exp Neurol 6:465–477

    PubMed  Google Scholar 

  • Mooney DM, Zhang L, Basile C, Senatorov VV, Ngsee J, Omar A, Hu B (2004) Distinct forms of cholinergic modulation in parallel thalamic sensory pathways. Proc Natl Acad Sci USA 101:320–324

    CAS  PubMed  Google Scholar 

  • Motts SD, Slusarczyk AS, Sowick CS, Schofield BR (2008) Distribution of cholinergic cells in guinea pig brainstem. Neuroscience 154:186–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orman SS, Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp Brain Res 42:475–482

    CAS  PubMed  Google Scholar 

  • Parikh H, Marzullo TC, Yazdan-Shahmorad A, Gage GJ, Kipke D (2007) Laminar characterization of spiking activity in the rat motor cortex. Conf Proc IEEE Eng Med Biol Soc 2007:4735–4738

    PubMed  Google Scholar 

  • Perrot X, Ryvlin P, Isnard J, Guénot M, Catenoix H, Fischer C, Mauguière F, Collet L (2006) Evidence for corticofugal modulation of peripheral auditory activity in humans. Cereb Cortex 16:941–948

    PubMed  Google Scholar 

  • Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    CAS  PubMed  Google Scholar 

  • Pinheiro AD, Wu M, Jen PH (1991) Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A 169:69–85

    CAS  PubMed  Google Scholar 

  • Poremba A, Gabriel M (1997) Medial geniculate lesions block amygdalar and cingulothalamic learning-related neuronal activity. J Neurosci 17:8645–8655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poremba A, Gabriel M (2001) Amygdalar efferents initiate auditory thalamic discriminative training-induced neuronal activity. J Neurosci 21:270–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puckett AC, Pandya PK, Moucha R, Dai W, Kilgard MP (2007) Plasticity in the rat posterior auditory field following nucleus basalis stimulation. J Neurophysiol 98:253–265

    PubMed  Google Scholar 

  • Puel JL, Rebillard G, Bonfils P, Pujol R (1989) Effect of visual selective attention on otoacoustic emissions. In: Wilson JP, Kemp DT (eds) Cochlear mechanisms. Plenum, New York, pp 315–321

    Google Scholar 

  • Rasmusson DD, Smith SA, Semba K (2007) Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat. Neuroscience 149:232–241

    CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806

    CAS  PubMed  Google Scholar 

  • Riquimaroux H, Gaioni SJ, Suga N (1991) Cortical computational maps control auditory perception. Science 251:565–568

    CAS  PubMed  Google Scholar 

  • Romanski LM, LeDoux JE (1993) Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex 3:515–532

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Exp Neurol 51:377–391

    CAS  PubMed  Google Scholar 

  • Sakai M, Suga N (2001) Plasticity of the cochleotopic (frequency) map in specialized and nonspecialized auditory cortices. Proc Natl Acad Sci USA 98:3507–3512

    CAS  PubMed  Google Scholar 

  • Sakai M, Suga N (2002) Centripetal and centrifugal reorganizations of tonotopic map of the auditory cortex in gerbils. Proc Natl Acad Sci USA 99:7108–7112

    CAS  PubMed  Google Scholar 

  • Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51:145–160

    PubMed  Google Scholar 

  • Siegel J (2002) The neural control of sleep and waking. Springer, New York

    Google Scholar 

  • Suga N (1972) Analysis of information-bearing elements in complex sounds by auditory neurons of bats. Audiology 11:58–72

    CAS  PubMed  Google Scholar 

  • Suga N (1973) Feature extraction in the auditory system of bats. In: Moller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 675–742

    Google Scholar 

  • Suga N (1982) Functional organization of the auditory cortex. In: Woolsey C (ed) Cortical sensory organization. Humana, Clifton, pp 157–218

    Google Scholar 

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 315–373

    Google Scholar 

  • Suga N (1989) Principles of auditory information-processing derived from neuroethology. J Exp Biol 146:277–286

    CAS  PubMed  Google Scholar 

  • Suga N (1994) The processing of auditory information carried by species-specific complex sounds. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT, Cambridge, pp 295–313

    Google Scholar 

  • Suga N (2008) Role of corticofugal feedback in hearing. J Comp Physiol A 194:169–183

    Google Scholar 

  • Suga N, Jen PH (1976) Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science 194:542–544

    CAS  PubMed  Google Scholar 

  • Suga N, Jen PH (1977) Further studies on the peripheral auditory system of “CF-FM” bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232

    CAS  PubMed  Google Scholar 

  • Suga N, Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4:783–794

    CAS  PubMed  Google Scholar 

  • Suga N, Niwa H, Taniguchi I, Margoliash D (1987) The personalized auditory cortex of the mustached bat: adaptation for echolocation. J Neurophysiol 58:643–654

    CAS  PubMed  Google Scholar 

  • Suga N, Gao E, Zhang Y, Ma X, Olsen JF (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–11814

    CAS  PubMed  Google Scholar 

  • Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36:9–18

    CAS  PubMed  Google Scholar 

  • Suga N, Ma X, Gao E, Sakai M, Chowdhury SA (2003) Descending system and plasticity for auditory signal processing: neuroethological data for speech scientists. Speech Commun 41:189–200

    Google Scholar 

  • Sullivan WE III (1982a) Neural representation of target distance in auditory cortex of the echolocating bat Myotis lucifugus. J Neurophysiol 48:1011–1032

    PubMed  Google Scholar 

  • Sullivan WE III (1982b) Possible neural mechanisms of target distance coding in auditory system of the echolocating bat Myotis lucifugus. J Neurophysiol 48:1033–1047

    PubMed  Google Scholar 

  • Sun X, Chen QC, Jen PH (1996) Corticofugal control of central auditory sensitivity in the big brown bat, Eptesicus fuscus. Neurosci Lett 212:131–134

    CAS  PubMed  Google Scholar 

  • Syka J, Poplear J (1984) Inferior colliculus in the rat: neuronal responses to stimulation of the auditory cortex. Neurosci Lett 51:235–240

    CAS  PubMed  Google Scholar 

  • Tang J, Suga N (2008) Modulation of auditory processing by cortico-cortical feed-forward and feedback projections. Proc Natl Acad Sci USA 105:7600–7605

    CAS  PubMed  Google Scholar 

  • Tang J, Suga N (2009) Corticocortical interactions between and within three cortical auditory areas specialized for time-domain signal processing. J Neurosci 29:7230–7237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Xiao Z, Suga N (2007) Bilateral cortical interaction: modulation of delay-tuned neurons in the contralateral auditory cortex. J Neurosci 27:8405–8413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre E (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86:506–517

    CAS  PubMed  Google Scholar 

  • Wang X, Galazyuk AV, Feng AS (2007) FM signals produce robust paradoxical latency shifts in the bat’s inferior colliculus. J Comp Physiol A 193:13–20

    Google Scholar 

  • Watanabe T, Yanagisawa K, Kanzaki J, Katsuki Y (1966) Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp Brain Res 2:302–317

    CAS  PubMed  Google Scholar 

  • Weinberger NM (1998) Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol Learn Mem 70:226–251

    CAS  PubMed  Google Scholar 

  • Weinberger NM (2007) Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learn Mem 14:1–16

    PubMed  PubMed Central  Google Scholar 

  • Wenstrup JJ, Ross LS, Pollak GD (1986) Binaural response organization within a frequency-band representation of the inferior colliculus: implications for sound localization. J Neurosci 6:962–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yan J (2007) Modulation of the receptive fields of midbrain neurons elicited by thalamic electrical stimulation through corticofugal feedback. J Neurosci 27:10651–10658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Suga N (2002a) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5:57–63

    CAS  PubMed  Google Scholar 

  • Xiao Z, Suga N (2002b) Reorganization of the cochleotopic map in the bat’s auditory system by inhibition. Proc Natl Acad Sci USA 99:15743–15748

    CAS  PubMed  Google Scholar 

  • Xiao Z, Suga N (2004) Reorganization of the auditory cortex specialized for echo-delay processing in the mustached bat. Proc Natl Acad Sci USA 101:1769–1774

    CAS  PubMed  Google Scholar 

  • Xiao X, Suga N (2005) Asymmetry in corticofugal modulation of frequency tuning in mustached bat auditory system. Proc Natl Acad Sci USA 102:19162–19167

    CAS  PubMed  Google Scholar 

  • Yan J, Ehret G (2001) Corticofugal reorganization of the midbrain tonotopic map in mice. Neuroreport 12:3313–3316

    CAS  PubMed  Google Scholar 

  • Yan J, Ehret G (2002) Corticofugal modulation of midbrain sound processing in the house mouse. Eur J Neurosci 16:119–128

    PubMed  Google Scholar 

  • Yan J, Suga N (1996) Corticofugal modulation of time-domain processing of biosonar information in bats. Science 273:1100–1103

    CAS  PubMed  Google Scholar 

  • Yan W, Suga N (1998) Corticofugal modulation of the midbrain tonotopic map in the bat auditory system. Nat Neurosci 1:54–58

    CAS  PubMed  Google Scholar 

  • Yan J, Suga N (1999) Corticofugal amplification of facilitative auditory responses of subcortical combination-sensitive neurons in the mustached bat. J Neurophysiol 81:817–824

    CAS  PubMed  Google Scholar 

  • Yan J, Zhang Y (2005) Sound-guided shaping of the receptive field in the mouse auditory cortex by basal forebrain activation. Eur J Neurosci 21:563–576

    CAS  PubMed  Google Scholar 

  • Yan J, Zhang Y, Ehret G (2005) Corticofugal shaping of freqeucny tuning curves in the central nucleus of the inferior colliculus of mice. J Neurophysiol 93:71–83

    PubMed  Google Scholar 

  • Yu YQ, Xiong Y, Chan YS, He J (2004) Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J Neurosci 24:3060–3069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Suga N (1997) Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat. J Neurophysiol 78:3489–3492

    CAS  PubMed  Google Scholar 

  • Zhang Y, Suga N (2000) Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bat. J Neurophysiol 84:325–333

    CAS  PubMed  Google Scholar 

  • Zhang Y, Suga N (2005) Corticofugal feedback for collicular plasticity evoked by electric stimulation of the inferior colliculus. J Neurophysiol 94:2676–2682

    PubMed  Google Scholar 

  • Zhang Y, Suga N, Yan J (1997) Corticofugal modulation of frequency processing in bat auditory system. Nature 387:900–903

    CAS  PubMed  Google Scholar 

  • Zhang Y, Hakes JJ, Bonfield SP, Yan J (2005) Corticofugal feedback for auditory midbrain plasticity elicited by tones and electrical stimulation of basal forebrain in mice. Eur J Neurosci 22:871–879

    CAS  PubMed  Google Scholar 

  • Zhou X, Jen PH (2005) Corticofugal modulation of directional sensitivity in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 203:201–215

    PubMed  Google Scholar 

  • Zook JM, Winer JA, Pollak GD, Bodenhamer RD (1985) Topology of the central nucleus of the mustache bat’s inferior colliculus: correlation of single unit properties and neuronal architecture. J Comp Neurol 231:530–546

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work has been supported by a research grant from the National Institute on Deafness and Other Communication Disorders (DC000175). Suga’s collaborators active in the field of auditory physiology are listed as coauthors of this article. In addition to them, Syed M. Chowdhury, Enquan Gao, Masashi Sakai, Wei Yan, Yongkui Zhang, and Yungfeng Zhang contributed to our research on corticofugal modulation. We thank Ms. Sally E. Miller for editing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Suga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suga, N., Ji, W., Ma, X., Tang, J., Xiao, Z., Yan, J. (2011). Corticofugal Modulation and Beyond for Auditory Signal Processing and Plasticity. In: Ryugo, D., Fay, R. (eds) Auditory and Vestibular Efferents. Springer Handbook of Auditory Research, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7070-1_11

Download citation

Publish with us

Policies and ethics