Advertisement

VAPB Aggregates and Neurodegeneration

  • P. Skehel
Chapter

Abstract

VAP proteins are a small family of type II membrane proteins enriched on the endoplasmic reticulum that have been conserved from yeast to mammals. The N-terminal half of the proteins consists of a domain highly homologous to a polypeptide found in the motile sperm of nematodes known as the major sperm protein (MSP). A mis-sense mutation in human vapB that changes a proline residue to a serine in the most highly conserved region of the MSP domain causes a rare form of motor neuron disease, amyotrophic lateral sclerosis type 8. Whether vapB P56S is a gain or loss of function mutation is not yet clear, however, it causes the protein to aggregate and may disrupt the normal function and regulation of the ER.

Keywords

Amyotrophic Lateral Sclerosis Spinal Muscular Atrophy Amyotrophic Lateral Sclerosis Patient Motor Neuron Disease Wild Type Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe, K., M. Aoki, et al. (1996). “Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations.” J Neurol Sci 136(1–2): 108–16.PubMedCrossRefGoogle Scholar
  2. Amarilio, R., S. Ramachandran, et al. (2005). “Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction.” J Biol Chem 280(7): 5934–44.PubMedCrossRefGoogle Scholar
  3. Andersen, P. M. (2006). “Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene.” Curr Neurol Neurosci Rep 6(1): 37–46.PubMedCrossRefGoogle Scholar
  4. Arrasate, M., S. Mitra, et al. (2004). “Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death.” Nature 431(7010): 805–10.PubMedCrossRefGoogle Scholar
  5. Atkin, J. D., M. A. Farg, et al. (2006). “Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein disulfide isomerase with superoxide dismutase 1.” J Biol Chem 281: 30152–65.PubMedCrossRefGoogle Scholar
  6. Bernales, S., F. R. Papa, et al. (2006). “Intracellular signaling by the unfolded protein response.” Annu Rev Cell Dev Biol 22(1): 487–508.PubMedCrossRefGoogle Scholar
  7. Brickner, J. H. and P. Walter (2004). “Gene recruitment of the activated INO1 locus to the nuclear membrane.” PLoS Biol 2(11): e342.PubMedCrossRefGoogle Scholar
  8. Chai, A., J. Withers, et al. (2008). “hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction.” Hum Mol Genet 17(2): 266–80.PubMedCrossRefGoogle Scholar
  9. Chang, H. J., S. A. Jesch, et al. (2004). “Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae.” Genetics 168(4): 1899–913.PubMedCrossRefGoogle Scholar
  10. Dominic M., D. J. S. Walsh (2007). “Aβ Oligomers – a decade of discovery.” J Neurochem 101(5): 1172–84.CrossRefGoogle Scholar
  11. Edwards, D. R., M. M. Handsley, et al. (2008). “The ADAM metalloproteinases.” Mol Aspects Med 29(5): 258–89.PubMedCrossRefGoogle Scholar
  12. Foster, L., M. Weir, et al. (2000). “A functional role for VAP-33 in insulin-stimulated GLUT4 traffic.” Traffic 1(6): 512–21.PubMedCrossRefGoogle Scholar
  13. Gao, L., H. Aizaki, et al. (2004). “Interactions between viral nonstructural proteins and host protein hVAP-33.” J Virol 78(7): 3480–8.PubMedCrossRefGoogle Scholar
  14. Gkogkas, C., S. Middleton, et al. (2008). “VAPB interacts with and modulates the activity of ATF6.” Hum Mol Genet 17: 1517–26.PubMedCrossRefGoogle Scholar
  15. Haass, C. and D. J. Selkoe (2007). “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide.” Nat Rev Mol Cell Biol 8(2): 101–12.PubMedCrossRefGoogle Scholar
  16. Hamamoto, I., Y. Nishimura, et al. (2005). “Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B.” J Virol 79(21): 13473–82.PubMedCrossRefGoogle Scholar
  17. Hand, C. and G. Rouleau (2002). “Familial amyotrophic lateral sclerosis.” Muscle Nerve 25(2): 135–59.PubMedCrossRefGoogle Scholar
  18. Ito, K., T. Uchiyama, et al. (2002). “[Different clinical phenotypes of siblings with familial amyotrophic lateral sclerosis showing Cys146Arg point mutation of superoxide dismutase 1 gene].” Rinsho Shinkeigaku 42(2): 175–7.PubMedGoogle Scholar
  19. Kaiser, S. E., J. H. Brickner, et al. (2005). “Structural basis of FFAT motif-mediated ER targeting.” Structure 13(7): 1035–45.PubMedCrossRefGoogle Scholar
  20. Kanekura, K., I. Nishimoto, et al. (2006). “Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8).” J Biol Chem 281(40): 30223–33.PubMedCrossRefGoogle Scholar
  21. Katayama, T., K. Imaizumi, et al. (2001). “Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked Presenilin-1 mutations.” J Biol Chem 276(46): 43446–54.PubMedCrossRefGoogle Scholar
  22. Kawano, M., K. Kumagai, et al. (2006). “Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT.” J Biol Chem 281(40): 30279–88.PubMedCrossRefGoogle Scholar
  23. King, K. L., M. Stewart, et al. (1992). “Structure and macromolecular assembly of two isoforms of the major sperm protein (MSP) from the amoeboid sperm of the nematode, Ascaris suum.” J Cell Sci 101(4): 847–857.PubMedGoogle Scholar
  24. Klein, R. (2009). “Bidirectional modulation of synaptic functions by Eph/ephrin signaling.” Nat Neurosci 12(1): 15–20.PubMedCrossRefGoogle Scholar
  25. Lapierre, L., P. Tuma, et al. (1999). “VAP-33 localizes to both an intracellular vesicle population and with.” J Cell Sci 112(Pt 21): 3723–32.PubMedGoogle Scholar
  26. Loewen, C., A. Roy, et al. (2003). “A conserved ER targeting motif in three families of lipid binding proteins.” EMBO J 22(9): 2025–35.PubMedCrossRefGoogle Scholar
  27. Loewen, C. J. and T. P. Levine (2005). “A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins.” J Biol Chem 280(14): 14097–104.PubMedCrossRefGoogle Scholar
  28. Marciniak, S. J. and D. Ron (2006). “Endoplasmic reticulum stress signaling in disease.” Physiol Rev 86(4): 1133–49.PubMedCrossRefGoogle Scholar
  29. Marques, V. D., A. A. Barreira, et al. (2006). “Expanding the phenotypes of the Pro56Ser VAPB mutation: proximal SMA with dysautonomia.” Muscle Nerve 34(6): 731–9.PubMedCrossRefGoogle Scholar
  30. Menzies, F., A. Grierson, et al. (2002). “Selective loss of neurofilament expression in Cu/Zn superoxide dismutase.” J Neurochem 82(5): 1118–28.PubMedCrossRefGoogle Scholar
  31. Nikawa, J.-I., A. Murakami, et al. (1995). “Cloning and sequence of the SCS2 gene, which can suppress the defect of IN01 expression in an inositol auxotrophic mutant of Saccharomyces cerevisiae.” J Biochem 118(1): 39–45.PubMedGoogle Scholar
  32. Nishimura, A., M. Mitne-Neto, et al. (2004a). “A novel locus for late onset amyotrophic lateral sclerosis/motor neurone.” J Med Genet 41(4): 315–20.PubMedCrossRefGoogle Scholar
  33. Nishimura, A. L., M. Mitne-Neto, et al. (2004b). “A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis.” Am J Hum Genet 75(5): 822–31.PubMedCrossRefGoogle Scholar
  34. Nishimura, Y., M. Hayashi, et al. (1999). “Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins.” Biochem Biophys Res Commun 254(1): 21–26.PubMedCrossRefGoogle Scholar
  35. Pennetta, G., P. Hiesinger, et al. (2002). “Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage dependent manner.” Neuron 35(2): 291–306.PubMedCrossRefGoogle Scholar
  36. Prosser, D. C., D. Tran, et al. (2008). “FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation.” J Cell Sci 121(18): 3052–61.PubMedCrossRefGoogle Scholar
  37. Ratnaparkhi, A., G. M. Lawless, et al. (2008). “A Drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism.” PLoS ONE 3(6): e2334.PubMedCrossRefGoogle Scholar
  38. Rosen, D. R., T. Siddique, et al. (1993). “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.” Nature 362: 59–62.PubMedCrossRefGoogle Scholar
  39. Schroder, M. and R. J. Kaufman (2005). “The mammalian unfolded protein response.” Annu Rev Biochem 74: 739–89.PubMedCrossRefGoogle Scholar
  40. Schymick, J. C., K. Talbot, et al. (2007). “Genetics of sporadic amyotrophic lateral sclerosis.” Hum Mol Genet 16(R2): R233–242.PubMedCrossRefGoogle Scholar
  41. Sepsenwol, S., H. Ris, et al. (1989). “A unique cytoskeleton associated with crawling in the amoeboid sperm of the nematode, Ascaris suum.” J Cell Biol 108(1): 55–66.PubMedCrossRefGoogle Scholar
  42. Shen, J., X. Chen, et al. (2002). “ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals.” Dev Cell 3(1): 99–111.PubMedCrossRefGoogle Scholar
  43. Simon, A. M., R. L. de Maturana, et al. (2009). “Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease.” J Alzheimers Dis 17: 773–86.PubMedGoogle Scholar
  44. Skehel, P., R. Fabian-Fine, et al. (2000). “Mouse VAP33 is associated with the endoplasmic reticulum and microtubules.” Proc Natl Acad Sci U S A 97(3): 1101–6.PubMedCrossRefGoogle Scholar
  45. Skehel, P., K. Martin, et al. (1995). “A VAMP-binding protein from Aplysia required for neurotransmitter release.” Science 269(5230): 1580–3.PubMedCrossRefGoogle Scholar
  46. Snapp, E. L., R. S. Hegde, et al. (2003). “Formation of stacked ER cisternae by low affinity protein interactions.” J Cell Biol 163(2): 257–69.PubMedCrossRefGoogle Scholar
  47. Soto, C. (2003). “Unfolding the role of protein misfolding in neurodegenerative diseases.” Nat Rev Neurosci 4(1): 49–60.PubMedCrossRefGoogle Scholar
  48. Soussan, L., D. Burakov, et al. (1999). “ERG30, a VAP-33-related protein, functions in protein transport mediated.” J Cell Biol 146(2): 301–11.PubMedCrossRefGoogle Scholar
  49. Talbot, K. (2002). “Motor neurone disease.” Postgrad Med J 78(923): 513–519.PubMedCrossRefGoogle Scholar
  50. Tardif, K. D., K. Mori, et al. (2004). “Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response.” J Biol Chem 279(17): 17158–64.PubMedCrossRefGoogle Scholar
  51. Teuling, E., S. Ahmed, et al. (2007). “Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates.” J Neurosci 27(36): 9801–15.PubMedCrossRefGoogle Scholar
  52. Tomita, T., S. Tanaka, et al. (2006). “Presenilin-dependent intramembrane cleavage of ephrin-B1.” Mol Neurodegener 1: 2.PubMedCrossRefGoogle Scholar
  53. Tompkins, M. M. and W. D. Hill (1997). “Contribution of somal Lewy bodies to neuronal death.” Brain Res 775(1–2): 24–9.PubMedCrossRefGoogle Scholar
  54. Tsuda, H., S. M. Han, et al. (2008). “The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors.” Cell 133(6): 963–977.PubMedCrossRefGoogle Scholar
  55. Tu, H., L. Gao, et al. (1999). “Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like.” Virology 263(1): 30–41.PubMedCrossRefGoogle Scholar
  56. Wang, Y., J. Shen, et al. (2000). “Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response.” J Biol Chem 275(35): 27013–20.PubMedGoogle Scholar
  57. Weir, M., A. Klip, et al. (1998). “Identification of a human homologue of the vesicle-associated membrane.” Biochem J 333(Pt 2): 247–51.PubMedGoogle Scholar
  58. Welsem, M. v., J. Hogenhuis, et al. (2002). “The relationship between Bunina bodies, skein-like inclusions and neuronal.” Acta Neuropathol 103(6): 583–9.PubMedCrossRefGoogle Scholar
  59. Williamson, T., L. Corson, et al. (2000). “Toxicity of ALS-linked SOD1 mutants.” Science 288(5465): 399.PubMedCrossRefGoogle Scholar
  60. Wyles, J. P., C. R. McMaster, et al. (2002). “Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum.” J. Biol. Chem. 277(33): 29908–18.PubMedCrossRefGoogle Scholar
  61. Ye, J., R. B. Rawson, et al. (2000). “ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs.” Mol Cell 6(6): 1355–64.PubMedCrossRefGoogle Scholar
  62. Yoshida, H., K. Haze, et al. (1998). “Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors.” J Biol Chem 273(50): 33741–9.PubMedCrossRefGoogle Scholar
  63. Zhang, K. and R. J. Kaufman (2005). “The unfolded protein response. A stress signaling pathway critical for health and disease.” Neurology 2006 66(2 Suppl 1): S102–9.Google Scholar
  64. Zheng, Y., B. Gao, et al. (2005). “Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response.” J Microbiol 43(6): 529–36.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Integrative PhysiologyUniversity of EdinburghEdinburghUK

Personalised recommendations