Advertisement

Dirac Operators and Index Theory

  • Michael E. Taylor
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 116)

Abstract

The physicist P. A. M. Dirac constructed first-order differential operators whose squares were Laplace operators, or more generally wave operators, for the purpose of extending the Schrodinger–Heisenberg quantum mechanics to the relativistic setting. Related operators have been perceived to have central importance in the interface between PDE and differential geometry, and we discuss some of this here.

Keywords

Riemannian Manifold Vector Bundle Line Bundle Dirac Operator Spin Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [An].
    M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. AMS 2(1989), 455–490.Google Scholar
  2. [ABP].
    M. Atiyah, R. Bott, and V. Patodi, On the heat equation and the index theorem, Inventiones Math. 19(1973), 279–330.Google Scholar
  3. [ABS].
    M. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3(1964), 3–38.Google Scholar
  4. [AHS].
    M. Atiyah, N. Hitchen, and I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Royal Soc. London A 362(1978), 425–461.Google Scholar
  5. [AS].
    M. Atiyah and I. Singer, The index of elliptic operators I, Ann. Math. 87(1968), 484–530; III, Ann. Math. 87(1968), 546–664; IV, Ann. Math. 93(1971), 119–138; V, Ann. Math. 93(1971), 139–149.Google Scholar
  6. [BDT].
    P. Baum, R. Douglas, and M. Taylor, Cycles and relative cycles in analytic K-homology, J. Diff. Geom. 30(1989), 761–804.Google Scholar
  7. [Ber].
    F. Berezin, The Method of Second Quantization, Academic, New York, 1966.Google Scholar
  8. [BGM].
    M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d’une Variété Riemannienne, LNM #194, Springer, New York, 1971.CrossRefMATHGoogle Scholar
  9. [BGV].
    N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer, New York, 1992.CrossRefMATHGoogle Scholar
  10. [BV].
    N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France 113(1985), 305–345.Google Scholar
  11. [BV2].
    N. Berline and M. Vergne, A proof of Bismut local index theorem for a family of Dirac operators, Topology 26(1987), 438–464.Google Scholar
  12. [Bes].
    A. Besse, Einstein Manifolds, Springer, New York, 1987.CrossRefMATHGoogle Scholar
  13. [Bi].
    J. Bismut, The Atiyah–Singer theorems for classical elliptic operators, a probabilistic approach, J. Func. Anal. 57(1984), 56–99.Google Scholar
  14. [Bi2].
    J. Bismut, The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83(1986), 91–151.Google Scholar
  15. [BiC].
    J. Bismut and J. Cheeger, Families index for manifolds with boundary, superconnections, and cones, I, J. Func. Anal. 89(1990), 313–363; II, J. Func. Anal. 90(1990), 306–354.Google Scholar
  16. [Bl].
    B. Blackadar, K-theory for Operator Algebras, Springer, New York, 1986.CrossRefMATHGoogle Scholar
  17. [BTu].
    R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer, New York, 1982.CrossRefMATHGoogle Scholar
  18. [Ch].
    J. Cheeger, Analytic torsion and the heat equation, Ann. Math. 109(1979), 259–322.Google Scholar
  19. [Cher].
    S. S. Chern, A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds., Ann. Math. 45(1944), 747–752.Google Scholar
  20. [Chv].
    C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton, NJ, 1946.MATHGoogle Scholar
  21. [Con].
    A. Connes, Noncommutative Geometry, Academic, New York, 1994.MATHGoogle Scholar
  22. [CS].
    H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger Operators, Springer, New York, 1987.MATHGoogle Scholar
  23. [D].
    S. Donaldson, The Seiberg–Witten equations and 4-manifold topology, Bull. AMS 33(1996), 45–70.Google Scholar
  24. [Don].
    H. Donnelly, Local index theorems for families, Mich. Math. J. 35(1988), 11–20.Google Scholar
  25. [EGH].
    T. Eguchi, P. Gilkey, and A. Hanson, Gravitation, Gauge Theories, and Differential Geometry, Physics Reports, Vol. 66, no. 6(1980).Google Scholar
  26. [Fed].
    B. Fedosov, Direct proof of the formula for the index of an elliptic system in Euclidean space, Funct. Anal. Appl. 4(1970), 339–341.Google Scholar
  27. [FU].
    D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, Springer, New York, 1984.CrossRefMATHGoogle Scholar
  28. [Gt1].
    E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah–Singer index theorem, Comm. Math. Phys. 92(1983), 163–178.Google Scholar
  29. [Gt2].
    E. Getzler, A short proof of the local Atiyah–Singer index theorem, Topology 25(1986), 111–117.Google Scholar
  30. [Gil].
    P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC, Boca Raton, FL, 1995.MATHGoogle Scholar
  31. [Gu].
    R. Gunning, Lectures on Riemann Surfaces, Princeton University Press, Princeton, NJ, 1967.MATHGoogle Scholar
  32. [Har].
    R. Hartshorne, Algebraic Geometry, Springer, New York, 1977.CrossRefMATHGoogle Scholar
  33. [Hi].
    N. Hicks, Notes on Differential Geometry, Van Nostrand, New York, 1965.MATHGoogle Scholar
  34. [Ho].
    L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32(1979), 359–443.Google Scholar
  35. [Hir].
    F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, New York, 1966.CrossRefMATHGoogle Scholar
  36. [KN].
    S. Kobayashi and N. Nomizu, Foundations of Differential Geometry, Interscience, New York, Vol.1, 1963; Vol. 2, 1969.Google Scholar
  37. [Ko1].
    K. Kodaira, The theorem of Riemann–Roch on compact analytic surfaces, Am. J. Math. 73(1951), 813–875.Google Scholar
  38. [Ko2].
    K. Kodaira, The theorem of Riemann–Roch for adjoint systems on 3-dimensional algebraic varieties, Ann. Math. 56(1952), 298–342.Google Scholar
  39. [Kot].
    T. Kotake, An analytical proof of the classical Riemann–Roch theorem, Proc. Symp. Pure Math. 16(1970), 137–146.Google Scholar
  40. [LM].
    H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton University Press, Princeton, NJ, 1989.Google Scholar
  41. [Lic].
    A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris, Ser. A 257(1963), 7–9.Google Scholar
  42. [MS].
    H. McKean and I. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1(1967), 43–69.Google Scholar
  43. [Mel].
    R. Melrose, Index Theory on Manifolds with Corners, A. K. Peters, Boston, 1994.Google Scholar
  44. [Mil].
    J. Milnor, Morse Theory, Princeton University Press, Princeton, NJ, 1963.MATHGoogle Scholar
  45. [MiS].
    J. Milnor and J. Stasheff, Characteristic Classes, Princeton University Press, Princeton, NJ, 1974.MATHGoogle Scholar
  46. [Mor].
    J. Morgan, The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton University Press, Princeton, NJ, 1996.MATHGoogle Scholar
  47. [Pal].
    R. Palais, ed., Seminar on the Atiyah–Singer Index Theorem, Princeton University Press, Princeton, NJ, 1963.MATHGoogle Scholar
  48. [Pt1].
    V. Patodi, Curvature and the eigenforms of the Laplace operator, J. Diff. Geom. 5(1971), 233–249.Google Scholar
  49. [Pt2].
    V. Patodi, An analytic proof of the Riemann–Roch–Hirzebruch theorem for Kahler manifolds, J. Diff. Geom. 5(1971), 251–283.Google Scholar
  50. [Poo].
    W. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.MATHGoogle Scholar
  51. [Roe].
    J. Roe, Elliptic Operators, Topology, and Asymptotic Methods, Longman, New York, 1988.MATHGoogle Scholar
  52. [Rog].
    A. Rogers, A superspace path integral proof of the Gauss–Bonnet–Chern theorem, J. Geom. Phys. 4(1987), 417–437.Google Scholar
  53. [Spa].
    E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.MATHGoogle Scholar
  54. [Spi].
    M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1–5, Publish or Perish, Berkeley, 1979.Google Scholar
  55. [Stb].
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964.MATHGoogle Scholar
  56. [Tro].
    A. Tromba, A classical variational approach to Teichmuller theory, pp.155–185 in LNM #1365, Springer, New York, 1989.Google Scholar
  57. [Wit].
    E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B202(1982), 253.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations