# Euler and Navier—Stokes Equations for Incompressible Fluids

• Michael E. Taylor
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 117)

## Abstract

This chapter deals with equations describing motion of an incompressible fluid moving in a fixed compact space M, which it fills completely. We consider two types of fluid motion, with or without viscosity, and two types of compact space, a compact smooth Riemannian manifold with or without boundary. The two types of fluid motion are modeled by the Euler equation
$$\frac{\partial u} {\partial t} + {\nabla }_{u}u = -\text{ grad }p,\qquad \text{ div}u = 0,$$
(0.1)
for the velocity field u, in the absence of viscosity, and the Navier–Stokes equation
$$\frac{\partial u} {\partial t} + {\nabla }_{u}u = \nu \mathcal{L}u -\text{ grad }p,\qquad \text{ div }u = 0,$$
(0.2)
in the presence of viscosity. In (0.2), ν is a positive constant and $$\mathcal{L}$$ is the second-order differential operator
$$\mathcal{L}u = \text{ div Def }u,$$
(0.3)
which on flat Euclidean space is equal to Δu, when div u = 0. If there is a boundary, the Euler equation has boundary condition nu = 0, that is, u is tangent to the boundary, while for the Navier–Stokes equation one poses the no-slip boundary condition u = 0 on ∂M.

## Keywords

Vector Field Stokes Equation Euler Equation Vortex Tube Compact Riemannian Manifold
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [BaC].
H. Bahouri and J. Chemin, Equations de transport relatives a des champs de vecteurs non-lipschitziens et mecanique des fluides, Arch. Rat. Mech. Anal. 127(1994), 159–181.Google Scholar
2. [BM].
J. Ball and D. Marcus, Vorticity intensification and transition to turbulence in the three-dimensional Euler equations, Comm. Math. Phys. 147(1992), 371–394.Google Scholar
3. [Bar].
C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40(1972), 769–790.Google Scholar
4. [Bat].
G. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.
5. [BG].
J. T. Beale and C. Greengard, Convergence of Euler–Stokes splitting of the Navier–Stokes equations, Preprint, 1992.Google Scholar
6. [BKM].
J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-d Euler equations, Comm. Math. Phys. 94(1984), 61–66.Google Scholar
7. [BeC].
A. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152(1993), 19–28.Google Scholar
8. [BW].
J. Bona and J. Wu, The zero-viscosity limit of the 2D Navier–Stokes equations, Stud. Appl. Math. 109 (2002), 265–278.
9. [Bon].
V. Bondarevsky, On the global regularity problem for 3-dimensional Navier–Stokes equations, Preprint, 1995.Google Scholar
10. [BBr].
J. Bourguignon and H. Brezis, Remarks on the Euler equations, J. Func. Anal. 15(1974), 341–363.Google Scholar
11. [CKN].
L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. 35(1982), 771–831.Google Scholar
12. [Cha].
D. Chae, Weak solutions of the 2-D Euler equations with initial vorticity in L(log L), J. Diff. Equ. 103(1993), 323–337.Google Scholar
13. [Che1].
J. Chemin, Remarques sur l’éxistence globale pour le système de Navier–Stokes incompressible, SIAM J. Math. Anal. 23 (1992), 20–28.
14. [Che2].
J. Chemin, Persistence des structures géometriques dans les fluides incompressibles bidimensionnels, Ann. Ecole Norm Sup. Paris 26(1993), 517–542.Google Scholar
15. [Che3].
J. Chemin, Fluides Parfaits Incompressibles, Asterisque #230, Société Math. de France, 1995.Google Scholar
16. [ChL].
J. Chemin and N. Lerner, Flot de champs de vecteurs non-lipschitziens et équations de Navier–Stokes, Publ. CNRS#1062, 1993.Google Scholar
17. [Cho].
A. Chorin, Vorticity and Turbulence, Springer, New York, 1994.
18. [ChM].
A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer, New York, 1979.
19. [CFe].
P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier–Stokes equations, Indiana Math. J. 42(1993), 775–790.Google Scholar
20. [CFo].
P. Constantin and C. Foias, Navier–Stokes Equations, Chicago Lectures in Math., University of Chicago Press, 1988.
21. [CLM].
P. Constantin, P. Lax, and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, CPAM 38(1985), 715–724.Google Scholar
22. [Del].
J. Delort, Existence de nappes de tourbillon en dimension deux, J. AMS 4(1991), 553–586.Google Scholar
23. [DW].
P. Deuring and W. von Wahl, Strong solutions of the Navier–Stokes system in Lipschitz bounded domains, Math. Nachr. 171(1995), 111–198.Google Scholar
24. [DL].
R. Diperna and P.-L. Lions, Ordinary differential equations, transport theory, and Sobolev spaces, Invent. Math. 98 (1989), 511–547.
25. [DM].
R. DiPerna and A. Majda, Concentration in regularizations for 2-D incompressible flow, CPAM 40(1987), 301–345.Google Scholar
26. [Eb].
D. Ebin, A concise presentation of the Euler equations of hydrodynamics, Comm. PDE 9(1984), 539–559.Google Scholar
27. [EbM].
D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. 92(1970), 102–163.Google Scholar
28. [EM].
L. Evans and S. Müller, Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, J. AMS 7(1994), 199–219.Google Scholar
29. [FJR].
E. Fabes, B. F. Jones, and N. Riviere, The initial boundary value problem for the Navier–Stokes equation with data in L p, Arch. Rat. Mech. Anal. 45(1972), 222–240.Google Scholar
30. [FKV].
E. Fabes, C. Kenig, and G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J. 57(1988), 769–793.Google Scholar
31. [Fed].
P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155(1993), 219–248.Google Scholar
32. [Fer].
A. Ferrari, On the blow-up of the 3-D Euler equation in a bounded domain, Comm. Math. Phys. 155(1993), 277–294.Google Scholar
33. [FGT].
C. Foias, C. Guillope, and R. Temam, Lagrangian representation of a flow, J. Diff. Equ. 57(1985), 440–449.Google Scholar
34. [FT].
C. Foias and R. Temam, Some analytical and geometric properties of the solutions of the evolution Navier–Stokes equations, J. Math. Pures et Appl. 58(1979), 339–368.Google Scholar
35. [FK].
H. Fujita and T. Kato, On the Navier–Stokes initial value problem, Arch. Rat. Mech. Anal. 16(1964), 269–315.Google Scholar
36. [FM].
H. Fujita and H. Morimoto, On fractional powers of the Stokes operator, Proc. Jpn. Acad. 16(1970), 1141–1143.Google Scholar
37. [GM1].
Y. Giga and T. Miyakawa, Solutions in L r of the Navier–Stokes initial value problem, Arch. Rat. Mech. Anal. 89(1985), 267–281.Google Scholar
38. [GS].
G. Grubb and V. Solonnikov, Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods, Math. Scand. 69(1991), 217–290.Google Scholar
39. [Hel].
H. Helmholtz, On the integrals of the hydrodynamical equations that express vortex motion, Phil. Mag. 33(1887), 485–512.Google Scholar
40. [Hop].
E. Hopf, Uber die Anfangwertaufgabe fur die hydrodynamischen Grundgleichungen, Math. Nachr. 4(1951), 213–231.Google Scholar
41. [HM].
T. Hughes and J. Marsden, A Short Course in Fluid Mechanics, Publish or Perish Press, Boston, 1976.
42. [Kt1].
T. Kato, On classical solutions of two dimensional nonstationary Euler equations, Arch. Rat. Mech. Anal. 25(1967), 188–200.Google Scholar
43. [Kt2].
T. Kato, Nonstationary flows of viscous and ideal fluids in $${\mathbb{R}}^{3}$$, J. Funct. Anal. 9(1972), 296–305.Google Scholar
44. [Kt3].
T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Springer LNM 448(1974), 25–70.Google Scholar
45. [Kt4].
T. Kato, Strong L p-solutions to the Navier–Stokes equations in $${\mathbb{R}}^{m}$$, with applications to weak solutions, Math. Zeit. 187(1984), 471–480.Google Scholar
46. [Kt5].
T. Kato, Strong solutions of the Navier–Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. 22(1992), 127–155.Google Scholar
47. [Kt6].
T. Kato, The Navier–Stokes equation for an incompressible fluid in $${\mathbb{R}}^{2}$$ with a measure as the initial vorticity, Diff. Integr. Equ. 7 (1994), 949–966.
48. [Kt7].
T. Kato, Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with boundary, Seminar on PDE (S. S. Chern, ed.), Springer, New York, 1984.Google Scholar
49. [KL].
T. Kato and C. Lai, Nonlinear evolution equations and the Euler flow, J. Funct. Anal. 56(1984), 15–28.Google Scholar
50. [KP].
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, CPAM 41(1988), 891–907.Google Scholar
51. [Kel].
J. Kelliher, Vanishing viscosity and the accumulation of vorticity on the boundary, Commun. Math. Sci. 6 (2008), 869–880.
O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.
53. [Lam].
H. Lamb, Hydrodynamics, Dover, New York, 1932.
54. [Ler].
J. Leray, Etude de diverses équations integrales non linéaires et de quelques problèmes que pose d’hydrodynamique, J. Math. Pures et Appl. 12(1933), 1–82.Google Scholar
55. [Li].
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Lineaires, Dunod, Paris, 1969.
56. [LMN].
M. Lopes Filho, A. Mazzucato, and H. Nessenzveig Lopes, Vanishing viscosity limits for incompressible flow inside rotating circles, Phys. D. Nonlin. Phenom. 237 (2008), 1324–1333.
57. [LMNT].
M. Lopes Filho, A. Mazzucato, H. Nussenzveig Lopes, and M. Taylor, Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. 39 (2008), 471–513.
58. [Mj].
A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci. #53, Springer, New York, 1984.Google Scholar
59. [Mj2].
A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, CPAM 38(1986), 187–220.Google Scholar
60. [Mj3].
A. Majda, Mathematical fluid dynamics: The interaction of nonlinear analysis and modern applied mathematics, Proc. AMS Centennial Symp. (1988), 351–394.Google Scholar
61. [Mj4].
A. Majda, Vorticity, turbulence, and acoustics in fluid flow, SIAM Rev. 33(1991), 349–388.Google Scholar
62. [Mj5].
A. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Math. J. 42(1993), 921–939.Google Scholar
63. [MP].
C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer, New York, 1994.
64. [Mat].
S. Matsui, Example of zero viscosity limit for two-dimensional nonstationary Navier–Stokes flow with boundary, Jpn. J. Indust. Appl. Math. 11 (1994), 155–170.
65. [MT1].
A. Mazzucato and M. Taylor, Vanishing viscosity plane parallel channel flow and related singular perturbation problems, Anal. PDE 1 (2008), 35–93.
66. [MT2].
A. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular pipe flows, Preprint, 2010.Google Scholar
67. [MF].
R. von Mises and K. O. Friedrichs, Fluid Dynamics, Appl. Math. Sci. 5, Springer, New York, 1971.Google Scholar
68. [MiT].
M. Mitrea and M. Taylor, Navier–Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann. 321 (2001), 955–987.
69. [Mon].
S. Monniaux, Navier–Stokes equations in arbitrary domains: the Fujita–Kato scheme, Math. Res. Lett. 13 (2006), 455–461.
70. [OO].
H. Ockendon and J. Ockendon, Viscous Flow, Cambridge University Press, Cambridge, 1995.
71. [OT].
H. Ockendon and A. Tayler, Inviscid Fluid Flow, Appl. Math. Sci. #43, Springer, New York, 1983.Google Scholar
72. [PT].
L. Prandtl and O. Tietjens, Applied Hydro- and Aerodynamics, Dover, New York, 1934.Google Scholar
73. [Saf].
P. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, 1992.
74. [Sch].
H. Schlichting, Boundary Layer Theory, 8th ed., Springer, New York, 2000.
75. [Se1].
J. Serrin, Mathematical principles of classical fluid dynamics, Encycl. of Physics, Vol. 8, pt. 1, pp. 125–263, Springer, New York, 1959.Google Scholar
76. [Se2].
J. Serrin, The initial value problem for the Navier–Stokes equations, in Non-linear Problems, R.E.Langer, ed., University of Wisc. Press, Madison, Wisc., 1963, pp. 69–98.Google Scholar
77. [Sol1].
V. Solonnikov, On estimates of the tensor Green’s function for some boundary-value problems, Dokl. Akad. Nauk SSSR 130(1960), 988–991.Google Scholar
78. [Sol2].
V. Solonnikov, Estimates for solutions of nonstationary Navier–Stokes equations, J. Sov. Math. 8(1977), 467–529.Google Scholar
79. [T1].
M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.
80. [T2].
M. Taylor, Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations, Comm. PDE 17(1992), 1407–1456.Google Scholar
81. [Tem].
R. Temam, Navier–Stokes Equations, North-Holland, New York, 1977.
82. [Tem2].
R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal. 20(1975), 32–43.Google Scholar
83. [Tem3].
R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, Penn., 1983.Google Scholar
84. [VD].
M. Van Dyke, An Album of Fluid Motion, Parabolic, Stanford, Calif., 1982.Google Scholar
85. [vWa].
W. von Wahl, The Equations of Navier–Stokes and Abstract Parabolic Equations, Vieweg & Sohn, Braunschweig, 1985.Google Scholar
86. [W].
X. Wang, A Kato type theorem on zero viscosity limit of Navier–Stokes flows, Indiana Univ. Math. J. 50 (2001), 223–241.
87. [Wol].
W. Wolibner, Un théorème d’existence du mouvement plan d’un fluide parfait, homogene, incompressible, pendant un temps infiniment long, Math. Zeit. 37(1933), 698–726.Google Scholar
88. [Yud].
V. Yudovich, Non-stationary flow of an ideal incompressible fluid, J. Math. Math. Phys. 3(1963), 1032–1066.Google Scholar

## Authors and Affiliations

1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA