Skip to main content

Challenges When Using Real-World Bio-data to Calibrate Simulation Systems

  • Chapter
  • First Online:
Book cover Software Tools and Algorithms for Biological Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 696))

Abstract

Computer simulations allow us to gain insight into biological systems that would not be possible without destroying or changing the system in significant ways. To ensure that results are relevant, real-world bio-data should be used to calibrate simulations. Real-world data contain uncertainty due to the nature of how it is obtained. This chapter provides various sources on uncertainty and methods to cope with this challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hazelrigg, G. A. (1999) On the Role and Use of Mathematical Models in Engineering Design. Journal of Mechanical Design. 121:336–342

    Article  Google Scholar 

  2. McAllister, M. L., Dockery, J., Ovchinnikov, S., Adlassnig, K. (1985) Tutorial on Fuzzy Logic in simulation. Proceedings of the 1985 Winter Simulation Conference. In: Gantz, D., Blais, G., Solomon, S. (eds). 40–44

    Google Scholar 

  3. Cipra, B. (2000) Revealing Uncertainties in Computer Models. Science. New Series. 287:960–961

    CAS  Google Scholar 

  4. Sokolowski, J. A., Banks, C. M. (2009) Principles of Modeling and Simulation:A Multidisciplinary Approach. Wiley, New York

    Google Scholar 

  5. Oberkampf, W. L., Helton, J.C., Joslyn, C. A., Wojtkiewica, S. F., Ferson, S. (2004) Challenge Problems: Uncertainty in System Response Given Uncertain Parameters, Reliability Engineering System Safety. 85:11–19

    Article  Google Scholar 

  6. Oren, T (2009) Modeling and Simulation: A comprehensive and Integrative View. In: Ylmaz, L., Oren, T. (eds) Agent-directed Simulation and Systems Engineering, Wiley, Germany, pp 3–36

    Google Scholar 

  7. Kelton, W. D. (2007) Representing and Generating Uncertainty Effectively. Proceedings of 2007 Winter Simulation Conference. In: Henderson, S.G., Biller, B., Hsieh, M. H., Shortle, J., Tew, J. D., Barton, R. R. (eds). 38–42

    Google Scholar 

  8. Oberkampf, W. L., DeLand, S. M., Rutherford, B. M., Diegert, K. V., Alvin, K. F. (2000) Estimation of Total Uncertainty in Modeling and Simulation, Sandia Report, SAND 2000-0824

    Google Scholar 

  9. Needham, C. J., Bradford, J. R., Bulpitt, A. J., Westhead, D. R. (2007) A Primer on Learning in Bayesian networks for Computational Biology, pLoS Computational Biology. 3(8):1409–1416

    Google Scholar 

  10. Raychaudhuri, S. (2008) Introduction to Monte Carlo Simulation, Proceedings of the 2008 Winter Simulation conference, In: Mason, S. J, Hill, R. R., Monch, L, Rose, O., Jefferson, T, Fowler, J. W. (eds)

    Google Scholar 

  11. Bartarseh, O. G., Wang, Y. (2008) Reliable Simulation with Input Uncertainties Using an Interval-based Approach. Proceedings of the 2008 Winter Simulation Conference

    Google Scholar 

  12. Costa, P. C. G. (2005) Bayesian Semantics for the Semantic Web. Doctoral Dissertation. Department of Systems Engineering and Operations Research, George mason University, Fairfax

    Google Scholar 

  13. Kühn, C., Wierling, C., Kühn, A., Klipp, E., Panopoulou, G., Lehrach, H., Poustka, A. J. (2009) Monte Carlo Analysis of an ODE Model of the Sea Urchin Endomesoderm Network. BMC Systems Biology. 1–18

    Google Scholar 

  14. Wang, J., Sijn W., Symmans, W. F., Pusztai, L., Coombes, K. R. (2009) The Bimodiality Index: A Criterion for Discovering and Ranking Bimodel Signatures from cancer Gene Expression Profiling Data cancer Informatics 7:199–216

    Google Scholar 

  15. Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., Lin, C. H., Tu, J. (2005) A Framework for Validation of Computer Models. National Institute of Statistical Sciences. Technical Report 162

    Google Scholar 

  16. Cavendish, J. C. (2003) A Framework for Validation of Computer Models. In: Ferguson, D. R., Peters, T. J. (eds). Mathematics for Industry–Challenges and Frontiers. A Process View: Practice and Theory. Cambridge University Press

    Google Scholar 

  17. Lemey, P., Rambaut, A. D., Alexei J., Suchard, M. A. (2009) Bayesian Phylogeograph Finds Its Roots. Computational Biology. 5:9:1–16

    Google Scholar 

  18. Merrick, J. R. W., Dinesh, V., Singh, A., van Dorp, J. R., Mazzuchi, T. A. (2003) Propagation of Uncertainty in a Simulation-based Maritime Risk Assessment Model Utilizing Bayesian Simulation Techniques. Proceedings of the 2003 Winter Conference

    Google Scholar 

  19. Sheikh-Bahaei, S., Hunt, C. A. (2006) Prediction of InVitro Hepatic Biliary Excreation using Stochastic Agent-based Modeling and Fuzzy Clustering, Proceedings of the 2006 Winter Simulation conference, IEEE

    Google Scholar 

  20. Sanchez, S. M. (2008) Better than a PetaFlop: The Power of Efficient Experimental Design, Proceedings of the 2008 Winter Simulation conference. 73–84

    Google Scholar 

  21. Kuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd edn, Brooks/Cole, Pacific Grove

    Google Scholar 

  22. Lehar, J., Zimmermann, G. R., Krueger, A. S., Molnar, R. A., Ledell, J. T., Heilbut, A. M., Hort, L. F. III, Giusti, L. C., Nolan, G. P., Magid, O. A., Lee, M. S., Borisy, A. A., Stockwell, B. R., Keith, C. T. (2007) Chemical Combination Effects Predict Connectivity in Biological Systems. Molecular Systems Biology. 3:80:1–13

    Google Scholar 

  23. Wu, C. F. J., Hamada, M. (2002) Experiments – Planning, Analysis, and Parameter Design Optimization. Wiley, New York

    Google Scholar 

  24. Leon, R. V., Shoemaker, A. C., Kacker, R. N.(1987) Performance Measures Independent of Adjustment an Explanation and extension of Taguchi’s Signal-to-Noise Ratios, Technometrics. 3:253–265

    Article  Google Scholar 

  25. Rao, R. S., Kumar, C. G., Prakasham, R. S., Hobbs, P. J. (2008) The Taguchi Methodology as a Statistical Tool for Biotechnological Applications: A Critical Appraisal, Biotechnology Journal. 3:510–523

    Article  PubMed  CAS  Google Scholar 

  26. Darema, F. (2004) Dynamicd Data Driven Applications Systems; A New Paradigm for Application Simulation and Measurements. Computational Science. 4th International Conference. Krako, W. Poland, 3:662–669

    Google Scholar 

  27. Fikse, F. (2009) Fuzzy Classification of Phantom Parent Groups in Animal Model. Genetics Selection Evolution. 41:42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacie I. Ringleb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blount, E.M., Ringleb, S.I., Tolk, A. (2011). Challenges When Using Real-World Bio-data to Calibrate Simulation Systems. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_72

Download citation

Publish with us

Policies and ethics