Challenges When Using Real-World Bio-data to Calibrate Simulation Systems

  • Elaine M. Blount
  • Stacie I. Ringleb
  • Andreas Tolk
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)


Computer simulations allow us to gain insight into biological systems that would not be possible without destroying or changing the system in significant ways. To ensure that results are relevant, real-world bio-data should be used to calibrate simulations. Real-world data contain uncertainty due to the nature of how it is obtained. This chapter provides various sources on uncertainty and methods to cope with this challenge.


Epistemic Uncertainty Monte Carlo Technique Input Distribution Aleatory Uncertainty Markov Chain Monte Carlo Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hazelrigg, G. A. (1999) On the Role and Use of Mathematical Models in Engineering Design. Journal of Mechanical Design. 121:336–342CrossRefGoogle Scholar
  2. 2.
    McAllister, M. L., Dockery, J., Ovchinnikov, S., Adlassnig, K. (1985) Tutorial on Fuzzy Logic in simulation. Proceedings of the 1985 Winter Simulation Conference. In: Gantz, D., Blais, G., Solomon, S. (eds). 40–44Google Scholar
  3. 3.
    Cipra, B. (2000) Revealing Uncertainties in Computer Models. Science. New Series. 287:960–961Google Scholar
  4. 4.
    Sokolowski, J. A., Banks, C. M. (2009) Principles of Modeling and Simulation:A Multidisciplinary Approach. Wiley, New YorkGoogle Scholar
  5. 5.
    Oberkampf, W. L., Helton, J.C., Joslyn, C. A., Wojtkiewica, S. F., Ferson, S. (2004) Challenge Problems: Uncertainty in System Response Given Uncertain Parameters, Reliability Engineering System Safety. 85:11–19CrossRefGoogle Scholar
  6. 6.
    Oren, T (2009) Modeling and Simulation: A comprehensive and Integrative View. In: Ylmaz, L., Oren, T. (eds) Agent-directed Simulation and Systems Engineering, Wiley, Germany, pp 3–36Google Scholar
  7. 7.
    Kelton, W. D. (2007) Representing and Generating Uncertainty Effectively. Proceedings of 2007 Winter Simulation Conference. In: Henderson, S.G., Biller, B., Hsieh, M. H., Shortle, J., Tew, J. D., Barton, R. R. (eds). 38–42Google Scholar
  8. 8.
    Oberkampf, W. L., DeLand, S. M., Rutherford, B. M., Diegert, K. V., Alvin, K. F. (2000) Estimation of Total Uncertainty in Modeling and Simulation, Sandia Report, SAND 2000-0824Google Scholar
  9. 9.
    Needham, C. J., Bradford, J. R., Bulpitt, A. J., Westhead, D. R. (2007) A Primer on Learning in Bayesian networks for Computational Biology, pLoS Computational Biology. 3(8):1409–1416Google Scholar
  10. 10.
    Raychaudhuri, S. (2008) Introduction to Monte Carlo Simulation, Proceedings of the 2008 Winter Simulation conference, In: Mason, S. J, Hill, R. R., Monch, L, Rose, O., Jefferson, T, Fowler, J. W. (eds)Google Scholar
  11. 11.
    Bartarseh, O. G., Wang, Y. (2008) Reliable Simulation with Input Uncertainties Using an Interval-based Approach. Proceedings of the 2008 Winter Simulation ConferenceGoogle Scholar
  12. 12.
    Costa, P. C. G. (2005) Bayesian Semantics for the Semantic Web. Doctoral Dissertation. Department of Systems Engineering and Operations Research, George mason University, FairfaxGoogle Scholar
  13. 13.
    Kühn, C., Wierling, C., Kühn, A., Klipp, E., Panopoulou, G., Lehrach, H., Poustka, A. J. (2009) Monte Carlo Analysis of an ODE Model of the Sea Urchin Endomesoderm Network. BMC Systems Biology. 1–18Google Scholar
  14. 14.
    Wang, J., Sijn W., Symmans, W. F., Pusztai, L., Coombes, K. R. (2009) The Bimodiality Index: A Criterion for Discovering and Ranking Bimodel Signatures from cancer Gene Expression Profiling Data cancer Informatics 7:199–216Google Scholar
  15. 15.
    Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., Lin, C. H., Tu, J. (2005) A Framework for Validation of Computer Models. National Institute of Statistical Sciences. Technical Report 162Google Scholar
  16. 16.
    Cavendish, J. C. (2003) A Framework for Validation of Computer Models. In: Ferguson, D. R., Peters, T. J. (eds). Mathematics for Industry–Challenges and Frontiers. A Process View: Practice and Theory. Cambridge University PressGoogle Scholar
  17. 17.
    Lemey, P., Rambaut, A. D., Alexei J., Suchard, M. A. (2009) Bayesian Phylogeograph Finds Its Roots. Computational Biology. 5:9:1–16Google Scholar
  18. 18.
    Merrick, J. R. W., Dinesh, V., Singh, A., van Dorp, J. R., Mazzuchi, T. A. (2003) Propagation of Uncertainty in a Simulation-based Maritime Risk Assessment Model Utilizing Bayesian Simulation Techniques. Proceedings of the 2003 Winter ConferenceGoogle Scholar
  19. 19.
    Sheikh-Bahaei, S., Hunt, C. A. (2006) Prediction of InVitro Hepatic Biliary Excreation using Stochastic Agent-based Modeling and Fuzzy Clustering, Proceedings of the 2006 Winter Simulation conference, IEEEGoogle Scholar
  20. 20.
    Sanchez, S. M. (2008) Better than a PetaFlop: The Power of Efficient Experimental Design, Proceedings of the 2008 Winter Simulation conference. 73–84Google Scholar
  21. 21.
    Kuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd edn, Brooks/Cole, Pacific GroveGoogle Scholar
  22. 22.
    Lehar, J., Zimmermann, G. R., Krueger, A. S., Molnar, R. A., Ledell, J. T., Heilbut, A. M., Hort, L. F. III, Giusti, L. C., Nolan, G. P., Magid, O. A., Lee, M. S., Borisy, A. A., Stockwell, B. R., Keith, C. T. (2007) Chemical Combination Effects Predict Connectivity in Biological Systems. Molecular Systems Biology. 3:80:1–13Google Scholar
  23. 23.
    Wu, C. F. J., Hamada, M. (2002) Experiments – Planning, Analysis, and Parameter Design Optimization. Wiley, New YorkGoogle Scholar
  24. 24.
    Leon, R. V., Shoemaker, A. C., Kacker, R. N.(1987) Performance Measures Independent of Adjustment an Explanation and extension of Taguchi’s Signal-to-Noise Ratios, Technometrics. 3:253–265CrossRefGoogle Scholar
  25. 25.
    Rao, R. S., Kumar, C. G., Prakasham, R. S., Hobbs, P. J. (2008) The Taguchi Methodology as a Statistical Tool for Biotechnological Applications: A Critical Appraisal, Biotechnology Journal. 3:510–523PubMedCrossRefGoogle Scholar
  26. 26.
    Darema, F. (2004) Dynamicd Data Driven Applications Systems; A New Paradigm for Application Simulation and Measurements. Computational Science. 4th International Conference. Krako, W. Poland, 3:662–669Google Scholar
  27. 27.
    Fikse, F. (2009) Fuzzy Classification of Phantom Parent Groups in Animal Model. Genetics Selection Evolution. 41:42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Elaine M. Blount
  • Stacie I. Ringleb
    • 1
  • Andreas Tolk
  1. 1.Old Dominion UniversityNorfolkUSA

Personalised recommendations