Analysis and Clustering of MicroRNA Array: A New Efficient and Reliable Computational Method

  • Luca Sterpone
  • Federica Collino
  • Giovanni Camussi
  • Claudio Loconsole
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)


MicroRNAs (miRNAs) play determinant roles in gene expression and several cellular processes of mammalian. These processes include differentiation, development, apoptosis, and cancer pathomechanisms. In detail, miRNAs are known to regulate the expression of keys genes relevant to cancer and potentially to other diseases [1–3]. MiRNAs are short noncoding RNAs having a central function in gene expression, since miRNAs are involved in cellular differentiation processes [4, 5], organism developments [6], and apoptosis. Furthermore, recent studies provide growing evidence of the contribution of miRNAs in cancer cellular mechanisms. Therefore, the analysis and the correct identification of miRNAs expression levels play a key role for better understanding and classifying cancer and other diseases. In parallel with the drastic growing of interest into the study of miRNAs, the support of systems and tools that allow an efficient and more robust analysis of miRNA’s expression levels become increasing mandatory to have a better disease identification.


  1. 1.
    He L., Hannon G., MicroRNAs: smallRNAs with a big role in gene regulation, Nat Rev Genet 2004, 5: 522, 531Google Scholar
  2. 2.
    Pasquinelli A.E., Hunter S., Bracht J., MicroRNAs: a developing story, Curr Opin Genet Dev 2005, 15: 200–205PubMedCrossRefGoogle Scholar
  3. 3.
    Esquela-Kerscher A., Slack F., Oncomirs-MicroRNAs with a role in cancer, Nat Rev Cancer 2006, 6: 259–269PubMedCrossRefGoogle Scholar
  4. 4.
    Chang S., Johnston R. Jr., Frokjaer-Jensen C., Lockery S., Hobert O., MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode, Nature 2004, 430: 785–789PubMedCrossRefGoogle Scholar
  5. 5.
    Lee R.C., Feinbaum R.L., Ambros V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 1993, 75: 843–854Google Scholar
  6. 6.
    Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvle A.E., Horvitz H.R., Ruvkun G., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature 2000, 403: 901–906PubMedCrossRefGoogle Scholar
  7. 7.
    Peltier H.J., Latham G.J., Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissue, RNA 2008, 14: 844–852PubMedCrossRefGoogle Scholar
  8. 8.
    Deregibus M.C., Cantaluppi V., Calogero R., Lo Iacono M., Tetta C., Biancone L., Bruno S., Bussolati B., Camussi G., Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA, Blood 2007, 110 (7): 2440–2448PubMedCrossRefGoogle Scholar
  9. 9.
    Collino F., Revelli A., Massobrio M., Katsaros D., Schmitt-Ney M., Camussi G., Bussolati B., Epithelial-mesenchymal transitino of ovarian tumor cells induce san angiogenic monocyte cell population, Exp Cell Res. 15 October 2009, 315 (17): pp. 2982–2994, Epub 2009 June 16, PubMed PMID: 19538958Google Scholar
  10. 10.
    Whitcombe D., Theaker J., Guy S.P., Brown T., Little S., Detection of PCR products using self-probing amplicons and fluorescence, Nat Biotechnol 1999, 17 (8): 804–807PubMedCrossRefGoogle Scholar
  11. 11.
    Sterpone L., A novel dual-core architecture for the analysis of DNA microarray images, IEEE Trans Instrum Meas 2009, 58 (8): 2653–2662CrossRefGoogle Scholar
  12. 12.
    Bartlett J., Stirling D., A short history of the polymerase chain reaction, Springer Ser Meth Mol Biol 2003, 226: 3–6Google Scholar
  13. 13.
    Pfaffl M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acid Res 2001, 29 (9): 1–29CrossRefGoogle Scholar
  14. 14.
    Shain E.B., Clemens J.M., A new method for robust quantitative and qualitative analysis of the real-time PCR, Nucleic Acid Res 2008, 36: 14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luca Sterpone
    • 1
  • Federica Collino
  • Giovanni Camussi
  • Claudio Loconsole
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTurinItaly

Personalised recommendations