Skip to main content

A Microcomputer FES System for Wrist Moving Control

  • Chapter
  • First Online:
Software Tools and Algorithms for Biological Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 696))

Abstract

A portable close-loop control FES system, whose controller is a microcomputer, was proposed in this chapter. Considering the time-varying nonlinear of the muscle system, a self-adaptive PI control strategy was used. It included a neural network identifier (NNI) and a PI controller. NNI could get the variability of muscle working condition to identify muscle model online. Parameters of PI would be optimized by the results of NNI. Some tracking experiments had been done on able-bodied volunteers and the precision were underĀ 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rushton D.N. (2003) Functional electrical stimulation and rehabilitationā€”an hypothesis, Med. Eng. Phys., 25(1),Ā 75ā€“78

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Jezernik S., Wassink R.G. and Keller T. (2004) Sliding mode closed-loop control of FES: controlling the shank movement, IEEE Trans. Biomed. Eng., 51(2), 263ā€“272

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Bobet J. and Stein R.B. (1998) A simple model of force generation by skeletal muscle during dynamic isometric contractions, IEEE Trans. Biomed. Eng., 45(8), 1010ā€“1016

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Frey Law L.A. and Shields R.K. (2006) Predicting human chronically paralyzed muscle force: a comparison of three mathematical models, J. Appl. Physiol., 100(3), 1027ā€“1036

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  5. Rakos M., Freudenshu B., Girsch W., etĀ al. (1999) Electromyogram-controlled functional electrical stimulation for treatment of the paralyzed upper extremity, Int. J. Artif. Organs, 23(5), 466ā€“469

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Simcox S., Davis G., Barriskill A., etĀ al. (2004) A portable, 8-channel transcutaneous stimulator for paraplegic muscle training and mobilityĀ ā€“ A technical note. J. Rehabil. Res. Dev., 41(1),Ā 41ā€“52

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Hart D.J., Taylor P.N., Chappell P.H., etĀ al. (2006) A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve, Med. Eng. Phys., 28(5), 438ā€“448

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Previdi F. and Carpanzano E. (2003) Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation, IEEE Trans. Control Syst. Technol., 11(3), 310ā€“324

    ArticleĀ  Google ScholarĀ 

  9. Ferrarin M., Pavan E., Spadone R., etĀ al. (2002) Standing-up exerciser based on functional electrical stimulation and body weight relief, Med. Biol. Eng. Comput., 40(3), 282ā€“289

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Tong K.Y. and Granat M.H. (1999) Gait control system for functional electrical stimulation using neural networks, Med. Biol. Eng. Comput., 37(1),Ā 35ā€“41

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Kostov A., Andrews B.J., Popovic D.B., etĀ al. (1995) Machine learning in control of functional electrical stimulation systems for locomotion, IEEE Trans. Biomed. Eng., 42(6), 541ā€“551

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Lan N., Feng H. and Crago P.E. (1994) Neural network generation of muscle stimulation patterns for control of arm movements, IEEE Trans. Rehabil. Eng., 2(4), 213ā€“224

    ArticleĀ  Google ScholarĀ 

  13. Sepulveda F., Granat M.H. and Cliquet A. Jr. (1998) Gait restoration in a spinal cord injured subject via neuromuscular electrical stimulation controlled by an artificial neural network, Int. J. Artif. Organs, 21(1),Ā 49ā€“62

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Hatwell M.S., Oderkerk B.J., Sacher C.A., etĀ al. (1991) The development of a model reference adaptive controller to control the knee joint of paraplegics, IEEE Trans. Automat. Contr., 36(6), 683ā€“691

    ArticleĀ  Google ScholarĀ 

  15. Bernotas L.A., Crago P.E. and Chizeck H.J. (1986) A discrete-time model of electrically stimulated muscle, IEEE Trans. Biomed. Eng., 33(9), 829ā€“838

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Rumelhart D.E., Hinton G.E. and Williams R.J. (1986) Learning representations by back-propagating errors, Nature, 323(9), 533ā€“536

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cao, L., Yang, JS., Geng, ZL., Cao, G. (2011). A Microcomputer FES System for Wrist Moving Control. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_63

Download citation

Publish with us

Policies and ethics