Advertisement

Verbal Decision Analysis Applied on the Optimization of Alzheimer’s Disease Diagnosis: A Case Study Based on Neuroimaging

  • Isabelle Tamanini
  • Ana Karoline de Castro
  • Plácido Rogério Pinheiro
  • Mirian Calíope Dantas Pinheiro
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)

Abstract

There is a great challenge in identifying the early diagnosis of the Alzheimer’s disease, which has become the most frequent cause of dementia in the last few years, being responsible for 50% of the cases in western countries. The main focus of the work is the development of a multicriteria model for aiding in the decision making on the diagnosis of the Alzheimer’s disease. It will be made by means of the Aranaú Tool, a decision support system mainly based on the ZAPROS method. The modeling and evaluation processes were conducted based on bibliographic sources, questionnaires, and on information given by a medical expert. The questionnaires analyzed were based mainly on patients’ neuroimaging tests and were tried under various relevant aspects to the diagnosis of the disease.

Keywords

Medical Expert Real Alternative Preference Elicitation Reference Situation Behavior Rate Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are thankful to the National Counsel of Technological and Scientific Development (CNPq) for all the support received and to the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) for making available the data used in this case study.

References

  1. 1.
    Bassett, S.S.: Attention: Neuropsychological Predictor of Competency in Alzheimer’s Disease. Journal of Geriatric Psychiatry and Neurology 12(4):200–205 (1999)PubMedCrossRefGoogle Scholar
  2. 2.
    Castro, A.K.A. de, Pinheiro, P.R., Pinheiro, M.C.D.: Applying a Decision Making Model in the Early Diagnosis of Alzheimer’s Disease. In: J. Yao, P. Lingras, W.-Z. Wu, M. Szczuka, N. Cercone and D. Slezak (Eds.): Rough Set and Knowledge Technology, 2nd International Conference (RSKT) Toronto, Canada, 2007 pp. 149–156. LNCS 4481 (2007)Google Scholar
  3. 3.
    Castro, A.K.A. de, Pinheiro, P.R., Pinheiro, M.C.D.: A Multicriteria Model Applied in The Early Diagnosis of Alzheimer’s: A Bayesian Approach. VI International Conference on Operational Research for Development (ICORD) Fortaleza, Brazil, v.VI pp. 9–19 (2007)Google Scholar
  4. 4.
    Castro, A.K.A. de, Pinheiro, P.R., Pinheiro, M.C.D.: A Multicriteria Model Applied in the Diagnosis of Alzheimer’s Disease. In: G. Wang, T. Li, J. W. Grzymsls-Busse, D. Miao, A. Skowron and Y. Y. Yao (Eds.): Rough Set and Knowledge Technology, 3rd International Conference (RSKT) Chengdu, China, 2008 pp. 612–619. LNCS 5009 (2008)Google Scholar
  5. 5.
    Castro, A.K.A. de, Pinheiro, P.R., Pinheiro, M.C.D.: A Hybrid Model for Aiding in Decision Making for the Neuropsychological Diagnosis of Alzheimer’s Disease. In: C.-C. Chan, J. W. Grzymala-Busse and W. P. Ziarko (Eds.): 6th International Conference Rough Sets on and Current Trends in Computing (RSCTC) Akron, Ohio, 2008 pp. 495–504. LNCS 5306 (2008)Google Scholar
  6. 6.
    Castro, A.K.A.: Um Modelo Híbrido Aplicado ao Diagnóstico da Doença de Alzheimer. Master Thesis, Master Program in Applied Computer Sciences, University of Fortaleza (2009)Google Scholar
  7. 7.
    Castro, A.K.A. de, Pinheiro, P.R., Pinheiro, M.C.D.: An Approach for the Neuropsychological Diagnosis of Alzheimer’s Disease. In: G. Wang, T. Li, J. W. Grzymsls-Busse, D. Miao, A. Skowron and Y. Y. Yao (Eds.): Rough Set and Knowledge Technology, 4th International Conference (RSKT) Gold Coast, Australia, 2009 pp. 216–223. LNCS 5589 (2009)Google Scholar
  8. 8.
    Castro, A.K.A. de, Pinheiro, P.R., Pinheiro, M.C.D.: Towards the Neuropsychological Diagnosis of Alzheimer’s Disease: A Hybrid Model in Decision Making. In: M. D. Lytras, P. O. de Pablos, E. Damiani, D. E. Avison, A. Naeve and D. G. Horner (Eds.): Best Practices for the Knowledge Society. Knowledge, Learning, Development and Technology for All, Second World Summit on the Knowledge Society (WSKS) Chania, Crete. Communications in Computer and Information Science 49:(1):522–531. DOI: 10.1007/978-3-642-04757-2_57 (2009)Google Scholar
  9. 9.
    Daffner, K.R.: Current Approaches to the Clinical Diagnosis of Alzheimer’s Disease. In: L. F. M. Scinto and K. R. Daffner (Eds.): Early Diagnosis of Alzheimer’s Disease. Humana, New Jersey pp. 29–64 (2000)Google Scholar
  10. 10.
    Fillenbaum, G.G., van Belle, G., Morris, J.C., et al.: Consortium to Establish a Registry for Alzheimers Disease (CERAD): The First Twenty Years. Alzheimer’s & Dementia 4(2):96–109 (2008)CrossRefGoogle Scholar
  11. 11.
    How the Brain and Nerve Cells Change During Alzheimer’s. Available via DIALOG. www.ahaf.org/assets/images/brain{ _}and{ _}nerve{ _}cell{ _}changes{ _}border.jpg.Cited25Sep2009
  12. 12.
    Hughes, C.P., Berg, L.,Danzinger, W.L., et al.: A New Clinical Scale for the Staging of Dementia. British Journal of Psychiatry 140(6):566–572 (1982)PubMedCrossRefGoogle Scholar
  13. 13.
    Koppel, R.: Alzheimer’s Disease: The Costs to U.S. Businesses in 2002. Alzheimers Association - Report (2002)Google Scholar
  14. 14.
    Larichev, O.: Ranking Multicriteria Alternatives: The Method ZAPROS III. European Journal of Operational Research 131(3):550–558 (2001)CrossRefGoogle Scholar
  15. 15.
    Morris, J.C., Heyman, A., Mohs, R.C., et al.: The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): Part 1. Clinical and Neuropsychological Assessment of Alzheimer’s Disease. Neurology 39(9):1159–1165 (1989)Google Scholar
  16. 16.
    Morris, J.: The Clinical Dementia Rating (CDR): Current Version and Scoring Rules. Neurology 43(11):2412–2414 (1993)PubMedGoogle Scholar
  17. 17.
    Moshkovich, H., Mechitov, A., Olson, D.: Ordinal Judgments in Multiattribute Decision Analysis. European Journal of Operational Research 137(3):625–641 (2002)CrossRefGoogle Scholar
  18. 18.
    Pinheiro, P.R., Castro, A.K.A. de, Pinheiro, M.C.D.: Multicriteria Model Applied in the Diagnosis of Alzheimer’s Disease: A Bayesian Network. 11th IEEE International Conference on Computational Science and Engineering, São Paulo, Brazil, pp. 15–22 (2008)Google Scholar
  19. 19.
    Prince, M.J.: Predicting the Onset of Alzheimer’s Disease Using Bayes’ Theorem. American Journal of Epidemiology 143(3):301–308 (1996)PubMedGoogle Scholar
  20. 20.
    Silva, A.C.S: Métodos Quantitativos Aplicados a Políticas de Saúde Pública: Estudo de caso dos idosos. 202f Master Thesis, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos (2006)Google Scholar
  21. 21.
    Tamanini, I., Pinheiro, P.R.: Reducing Incomparability in Multicriteria Decision Analysis: An Extension of the ZAPROS Method. Pesquisa Operacional, v.3, pp. 1–16 (2010)Google Scholar
  22. 22.
    Tamanini, I., Pinheiro, P.R.: Challenging the Incomparability Problem: An Approach Methodology Based on ZAPROS. Modeling, Computation and Optimization in Information Systems and Management Sciences, Communications in Computer and Information Science. Springer, Heidelberg 14(1):344–353. DOI:10.1007/978-3-540-87477-5_37 (2008)Google Scholar
  23. 23.
    Tamanini, I., Castro, A.K.A., Pinheiro, P.R., Pinheiro, M.C.D.: Towards an Applied Multicriteria Model to the Diagnosis of Alzheimer’s Disease: A Neuroimaging Study Case. 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS) v.3, pp. 652–656 (2009)Google Scholar
  24. 24.
    Tamanini, I., Castro, A.K.A., Pinheiro, P.R., Pinheiro, M.C.D.: Towards the Early Diagnosis of Alzheimer’s Disease: A Multicriteria Model Structured on Neuroimaging. International Journal of Social and Humanistic Computing 1:203–217 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Isabelle Tamanini
    • 1
  • Ana Karoline de Castro
  • Plácido Rogério Pinheiro
  • Mirian Calíope Dantas Pinheiro
  1. 1.Graduate Program in Applied Computer SciencesUniversity of Fortaleza (UNIFOR)FortalezaBrazil

Personalised recommendations