Advertisement

Histopathology Tissue Segmentation by Combining Fuzzy Clustering with Multiphase Vector Level Sets

  • Filiz Bunyak
  • Adel Hafiane
  • Kannappan Palaniappan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)

Abstract

High resolution, multispectral, and multimodal imagery of tissue biopsies is an indispensable source of information for diagnosis and prognosis of diseases. Automatic extraction of relevant features from these imagery is a valuable assistance for medical experts. A primary step in computational histology is accurate image segmentation to detect the number and spatial distribution of cell nuclei in the tissue, along with segmenting other structures such as lumen and epithelial regions which together make up a gland structure. This chapter presents an automatic segmentation system for histopathology imaging. Spatial constraint fuzzy C-means provides an unsupervised initialization. An active contour algorithm that combines multispectral edge and region informations through a vector multiphase level set framework and Beltrami color metric tensors refines the segmentation. An improved iterative kernel filtering approach detects individual nuclei centers and decomposes densely clustered nuclei structures. The obtained results show high performances for nuclei detection compared to the human annotation.

Keywords

Active Contour Spatial Constraint Gleason Grade Histopathology Image Geodesic Active Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stotzka, R., Manner, R., Bartels, P., Thompson, D.: A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions. Analytical and Quantitative Cytology and Histology 17(3) (1995) 204–218PubMedGoogle Scholar
  2. 2.
    Wetzel, A.: Computational aspects of pathology image classification and retrieval. The Journal of Supercomputing 11(3) (1997) 279–293CrossRefGoogle Scholar
  3. 3.
    Doyle, S., Hwang, M., Shah, K., Madabhushi, A., Feldman, M., Tomaszeweski, J.: Automated grading of prostate cancer using architectural and textural image features. In: IEEE International Symposium Biomedical Imaging: From Nano to Macro ISBI 2007. (April 2007) 1284–1287Google Scholar
  4. 4.
    Wittke, C., Mayer, J., Schweiggert, F.: On the classification of prostate carcinoma with methods from spatial statistics. IEEE Transactions on Information Technology in Biomedicine 11(4) (2007) 406–414PubMedCrossRefGoogle Scholar
  5. 5.
    Tabesh, A., Teverovskiy, M., Pang, H., Kumar, V., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Transactions on Medical Imaging 26(10) (2007) 1366–1378PubMedCrossRefGoogle Scholar
  6. 6.
    Yang, L., Tuzel, O., Chen, W., Meer, P., Salaru, G., Goodell, L., Foran, D.: PathMiner: A Web-Based tool for Computer-Assisted diagnostics in pathology. IEEE Transactions on Information Technology in Biomedicine 13(3) (2009) 291–299PubMedCrossRefGoogle Scholar
  7. 7.
    Huang, P., Lee, C.: Automatic classification for pathological prostate images based on fractal analysis. IEEE Transactions on Medical Imaging 28(7) (2009) 1037–1050PubMedCrossRefGoogle Scholar
  8. 8.
    Tosun, A.B., Kandemir, M., Sokmensuer, C., Gunduz-Demir, C.: Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection. Pattern Recognition 42(6) (2009) 1104–1112CrossRefGoogle Scholar
  9. 9.
    Sertel, O., Kong, J., Catalyurek, U., Lozanski, G., Saltz, J., Gurcan, M.: Histopathological image analysis using Model-Based intermediate representations and color texture: Follicular lymphoma grading. Journal of Signal Processing Systems 55(1) (April 2009) 169–183CrossRefGoogle Scholar
  10. 10.
    Hafiane, A., Bunyak, F., Palaniappan, K.: Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection. Lecture Notes in Computer Science (ACIVS) 5259 (2008) 903–914CrossRefGoogle Scholar
  11. 11.
    Hafiane, A., Bunyak, F., Palaniappan, K.: Evaluation of level set-based histology image segmentation using geometric region criteria. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA (Aug. 2009) 1–4Google Scholar
  12. 12.
    Hafiane, A., Bunyak, F., Palaniappan, K.: Clustering initiated multiphase active contours and robust separation of nuclei groups for tissue segmentation. In: IEEE International Conference on Pattern Recognition, Tampa, FL (Dec. 2008) 1–4Google Scholar
  13. 13.
    Hafiane, A., Zavidovique, B., Chaudhuri, S.: A modified fuzzy FCM with Peano scans to image segmentation. In: IEEE International Conference on Image Processing, Genova, Italy (Sept. 2005) 840–843Google Scholar
  14. 14.
    Kass, M., Witkin, A., Terzopoulous, D.: Snakes: Active contour models. International Journal of Computer Vision 1 (1988) 321–331CrossRefGoogle Scholar
  15. 15.
    Malladi, R., Sethian, J.A., Vemuri, B.: Shape modelling with front propagation:A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2) (Feb. 1995) 158–174Google Scholar
  16. 16.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1) (1997) 61–79CrossRefGoogle Scholar
  17. 17.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge, UK (1999) ISBN 0-521-645573-3Google Scholar
  18. 18.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2) (Feb. 2001) 266–277Google Scholar
  19. 19.
    Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3) (2002) 271–293CrossRefGoogle Scholar
  20. 20.
    Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation 11 (2000) 130–141CrossRefGoogle Scholar
  21. 21.
    Yan, P., Zhou, X., Shah, M., Wong, S.: Automatic segmentation of high-throughput rnai fluorescent cellular images. IEEE Transactions on Information Technology in Biomedicine 12(1) (January 2008) 109–117PubMedCrossRefGoogle Scholar
  22. 22.
    Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Transactions on Image Processing 10(10) (Oct 2001) 1467–1475PubMedCrossRefGoogle Scholar
  23. 23.
    Malpica, N., de Solórzano, C., Vaquero, J., Santos, A., Vallcorba, I., Garcia-Sagredo, J., del Pozo, F.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28(4) (Aug. 1997) 289–297Google Scholar
  24. 24.
    Ersoy, I., Palaniappan, K.: Multi-feature contour evolution for automatic live cell segmentation in time lapse imagery. In: IEEE Engineering in Medicine and Biology Society (Aug. 2008) 371–374Google Scholar
  25. 25.
    Li, G., Liu, T., Nie, J., Guo, L., Malicki, J., Mara, A., Holley, S., Xia, W., Wong, S.: Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion. Cytometry Part A 71(10) (Oct 2007) 835–845CrossRefGoogle Scholar
  26. 26.
    Yang, F., Jiang, T.: Cell image segmentation with kernel-based dynamic clustering and an ellipsoidal cell shape model. Journal of Biomedical Informatics 34(2) (2001) 67–73PubMedCrossRefGoogle Scholar
  27. 27.
    Yang, Q., Parvin, B.: Harmonic cut and regularized centroid transform for localization of subcellular structures. IEEE Transactions on Bio-Medical Engineering 50 (2003) 469–475PubMedCrossRefGoogle Scholar
  28. 28.
    Byun, J., Verardo, M.R., Sumengen, B., Lewis, G.P., Manjunath, B.S., Fisher, S.K.: Automated tool for the detection of cell nuclei in digital microscopic images: Application to retinal images. Molecular Vision 12 (2006) 949–960PubMedGoogle Scholar
  29. 29.
    Schmitt, O., Hasse, M.: Morphological multiscale decomposition of connected regions with emphasis on cell clusters. Computer Vision and Image Understanding 113(2) (2008) 188–201CrossRefGoogle Scholar
  30. 30.
    Parvin, B., Yang, Q., Han, J., Chang, H., Rydberg, B., Barcellos-Hoff, M.H.: Iterative voting for inference of structural saliency and characterization of subcellular events. IEEE Transactions on Image Processing 16(3) (March 2007) 615–623PubMedCrossRefGoogle Scholar
  31. 31.
    Schmitt, O., Hasse, M.: Radial symmetries based decomposition of cell clusters in binary and gray level images. Pattern Recognition 41 (2008) 1905–1923CrossRefGoogle Scholar
  32. 32.
    Hafiane, A., Chabrier, S., Rosenberger, C., Laurent, H.: A new supervised evaluation criterion for region based segmentation methods. Lecture Notes in Computer Science (ACIVS) 4678 (2007) 439–448CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Filiz Bunyak
    • 1
  • Adel Hafiane
  • Kannappan Palaniappan
  1. 1.Department of Computer ScienceUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations