Molecular Modeling Study of Interaction of Anthracenedione Class of Drug Mitoxantrone and Its Analogs with DNA Tetrameric Sequences

  • Pamita Awasthi
  • Shilpa Dogra
  • Lalit K. Awasthi
  • Ritu Barthwal
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 696)


Numbers of drugs are being synthesized every year to meet the target of safe and disease-free society. Presently molecular modeling technique is used to unfold the mechanism of action of drugs alone or in conjunction with experimental methodologies. There are a number of drugs which are successfully developed using this methodology. Mitoxantrone (MTX) – 1, 4-dihydroxy-5, 8-bis {[2-(2-hydroxyethyl) amino] amino}-9, 10-anthracenedione is marketed under the name Novantrone, an anticancer drug used in chemotherapy. Its important analog ametantrone and various other analogs differ from one another in the position of side chain or functionalities on the chromophore eventually exhibit varied biological activities. DNA binding is an important phenomenon for anticancer activity of these drugs. In order to understand the interactions of the drug molecules with its receptor site, at atomic level, we have carried out computer simulations of drug and DNA alone and also in complex mode in water as a medium. All the simulations are being carried out using molecular operating environment (MOE) and X3DNA software tools on SUN SOLARIS platform. Interaction energy of all the drug molecules with DNA is determined and compared. Also the structural changes in DNA and drug before and after complex formation are studied extensively.


Deoxyribose nucleic acid Mitoxantrone Molecular operating environment 



Research work reported in this manuscript is supported by the research grant under R&D, Ministry of Human Resources and Development, Government of India. The facilities provided by the NMR Centre, India Institute of Technology Roorkee (IIT-R), Uttaranchal, are highly acknowledged. (Tables 15 as a supplementary material.)


  1. 1.
    Frederick C. A., Williams L. D., Ughetto G., Van der Marel G. A., Van Boom J. H., Rich A. and Wang A. H. J. 1990. Structural comparison anticancer drug–DNA complex: Adriamycin and Daunomycin. Biochemistry 29: 2538–2549PubMedCrossRefGoogle Scholar
  2. 2.
    Arcamone F. 1981. Doxorubicin: Anticancer Antibiotics. Academic Press, New YorkGoogle Scholar
  3. 3.
    Neidle S. and Waring M. J. 1983. Molecular Aspects of Anti-Cancer Drug Action. Macmillan, LondonGoogle Scholar
  4. 4.
    Searle M. S.1993. NMR studies of drug-DNA interactions. Prog. NMR Spectrosc. 25: 403–480CrossRefGoogle Scholar
  5. 5.
    Lown J. W. 1993. Discovery and development of anthracycline antibiotics. Chem. Soc. Rev. 22: 165–176CrossRefGoogle Scholar
  6. 6.
    Di Marco A., Arcamone F. and Zunino F. In “Antibiotics”. (Eds. Corcoran J.W. and Hahn I.E.) 1974. Springer-Verlag, Berlin. 101–108Google Scholar
  7. 7.
    Durr F. E., Wallace R. E. and Citarella R.V. 1983. Molecular and biochemical pharamacology of mitoxantrone. Cancer Treat. Rev. 10: 3–11PubMedCrossRefGoogle Scholar
  8. 8.
    Islam S. A., Neidle S., Gandecha B. M., Partridge M., Patterson L. H. and Brown J. R. 1985. Comparative computer graphics and solution studies of the DNA interaction of substituted anthraquinones based on doxorubicin and mitoxantrone. J. Med. Chem. 28: 857–864PubMedCrossRefGoogle Scholar
  9. 9.
    Lee B. S. and Dutta P. K. 1989. Optical spectroscopic studies of the antitumor drug 1,4-dihydroxy-5,8-bis [[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione (mitoxantrone). J. Phys. Chem, 93: 5665–5672CrossRefGoogle Scholar
  10. 10.
    Kolodziejczyk P. and Suillerot A. G. 1987. Circular dichroism study of the interaction of mitoxantrone. Ametantrone and their Pd (II) complexes with deoxyribonucleic acid. Biochem. Biophys. Acta. 926: 249–257PubMedGoogle Scholar
  11. 11.
    Chen K. X., Gresh N. and Pullman B. 1985. A theoretical investigation on the sequence selective binding of mitoxantrone to double–stranded tetranucleotides. J. Biomol. Struct. Dyn. 3: 445–466PubMedGoogle Scholar
  12. 12.
    Gresh N. and Kahn P. H. 1990. Theoretical design of novel, 4 base pair selective derivatives of mitoxantrone. J. Biomol. Struct. Dyn. 7: 1141–1159PubMedGoogle Scholar
  13. 13.
    Chen K. X., Gresh N. and Pullman B. 1986. A theoretical investigation on the sequence selective binding of mitoxantrone to double–stranded tetranucleotides. Nucleic Acids Res. 14: 3799–3812PubMedCrossRefGoogle Scholar
  14. 14.
    Reidar L., Alison R. and Bengt N. 1992. The CD of ligand-DNA Systems. 2. Poly (dA-dT) B-DNA. Biopolymers 32: 1201–1214CrossRefGoogle Scholar
  15. 15.
    Reidar L., Alison R. and Bengt N. 1992. The CD of ligand-DNA Systems. 1. Poly (dG-dC) B-DNA. Biopolymers 31: 1709–1720Google Scholar
  16. 16.
    Lown J. W. and Hanstock C. C. 1985. High field 1H–NMR analysis of the 1:1 intercalation complex of the antitumor agent mitoxantrone and the DNA duplex [d(CpGpCpG)]. J. Biomol. Struc. Dyn. 2: 1097–1106Google Scholar
  17. 17.
    Kotovych G., Lown J. W. and Tong P. K. 1986. High field 1H and 31P NMR studies on the binding of the anticancer agent mitoxantrone to d–[CpGpApTpCpG)2. J. Biomol. Struct. Dyn. 4: 111–125PubMedGoogle Scholar
  18. 18.
    Parker B. S, Cullinane C. and Phillips D. R. 1999. Formation of DNA adducts by formaldehyde–activated mitoxantrone. Nucleic Acids Res. 27: 2918–2923PubMedCrossRefGoogle Scholar
  19. 19.
    Parker B. S., Cullinane C. and Phillips D. R. 2000. Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts. Nucleic Acids Res. 28: 983–989Google Scholar
  20. 20.
    Panousis C. and Phillips D. R. 1994. DNA sequence specificity of Mitoxantrone. Nucleic Acids Res. 22: 1342–1345PubMedCrossRefGoogle Scholar
  21. 21.
    Murdock K. C., Child R. G., Fabio P. F., Angier R. B., Wallace T. E., Durr F. E. and Citarella R. V. 1979. Antitumor agents.1, 4 Bis–[aminoalkyl) amino]–9, 10 anthracenedione. J. Med. Chem. 22: 1024–1030PubMedCrossRefGoogle Scholar
  22. 22.
    Collier D. A. and Neidle S. 1988. Synthesis, molecular modeling, DNA binding and antitumor properties of some substituted Amidoanthraquinone. J. Med. Chem. 1: 847–857CrossRefGoogle Scholar
  23. 23.
    Smith I. E. 1983. Mitoxantrone (novantrone): a review of experimental and early clinical studies. Cancer Treat Rev. 10: 103–115PubMedCrossRefGoogle Scholar
  24. 24.
    Faulds D., Balfour J. A., Chrisp P. and Langtry H. D. 1991. Mitoxantrone. A review of its pharmacodynamics and pharmacokinetic properties and therapeutic potential in the chemotherapy of cancer. Drugs 41: 440–449Google Scholar
  25. 25.
    Zee-Cheng R. K-Y and Cheng C. C. 1978. Antineoplastic agents. Structural-activity relationship study of bis(substituted amino-alkyloamino)anthraquinone. J. Med. Chem. 21: 291–294CrossRefGoogle Scholar
  26. 26.
    Parker B. S., Buley T., Evinson B., Cutts S. M., Neumann G. M., Iskander M. N. and Phillips D. R. 2004. Molecular understandings of mitoxantrone–DNA adduct formation: effect of cytosine methylation and flanking sequences. J. Biol. Chem. 279: 18814–18823PubMedCrossRefGoogle Scholar
  27. 27.
    Tarasiuk J., Tkaczyk-Gobis K., Stefanska B., Dzieduszycka M., Priebe W., Martelli S. and Borowski E. 1998. The role of structural factors of anthraquinone compounds and their quionone modified analogues in NADH dehydrogenase catalysed oxygen radical formation. Anticancer Drug Des 13: 923–939PubMedGoogle Scholar
  28. 28.
    Bailly C., Rouier S., Bernier J. L. and Waring M. J. 1986. DNA recognition by two mitoxantrone analogues: influence of the hydroxyl groups. FEBS Lett. 379: 269–272CrossRefGoogle Scholar
  29. 29.
    Zaggatto G., Moro S., Uriatte E., Ferrazzi E., Palu G. and Palumbo M. 1997. Amido analogues of mitoxantrone: physico chemical properties, molecular modeling cellular effects and antineoplastic potential. Anticancer Drug Des. 12: 99–112Google Scholar
  30. 30.
    Gatto B., Zagatto G., Sissi C., Cera C., Uriate E., Palu G., Caparnici G. and Palumbo M. 1996. Peptidyl anthraquinones as potential antineoplastic drugs: synthesis, DNA binding, redox cycling and biological activity. J. Med. Chem. 39: 3114–3122PubMedCrossRefGoogle Scholar
  31. 31.
    Horn D. E., Michael S. L., Amy J. F. and Gray E. 2000. Synthesis of symmetrically substituted 1, 4–bis [(aminoalkyl) amino]–5, 8–Dimethylanthracene–9, 10–diones. ARKIVOC 1: 876–881Google Scholar
  32. 32.
    Morier-Teissier E., Boitte N., Helbecque N., Bernier J., Pommery N., Duvalet J., Fournier C., Catteau J. and Honichart J. 1993. Synthesis and antitumor properties of an anthraquionone bisubstituted by the copper chelating peptide Gly-Gly-L-His. J. Med. Chem. 36: 2084–2090PubMedCrossRefGoogle Scholar
  33. 33.
    Zagotto G., Sissi C., Gatto B. and Palumbo M. 2004. Aminoacyl-analogues of mitoxantrone as novel DNA-damaging cytotoxic agents. ARKIVOC 204–218Google Scholar
  34. 34.
    Sakladanowski A. and Konopa J. 2000. Mitoxantrone and Ametantrone induce interstand cross-links in DNA of tumour cells. Br. J. Cancer 82: 1300–1304CrossRefGoogle Scholar
  35. 35.
    Konopa J. 2001. Antitumor acridines with diaminoalkylo pharmacophoric group. Pure Appl. Chem. 73: 1421–1428CrossRefGoogle Scholar
  36. 36.
    Krapcho A. P., Getahun Z., Avery K. L., Vargas K. J. and Hacker M. P. 1991. Synthesis and antitumor evaluations of symmetrically and unsymmetrically substituted 1,4-bis [(aminoalkyl)amino]anthracene-9,10-diones and 1,4-bis[(aminoalkyl)amino]-5,8-dihydroxyanthracene-9,10-dione. J. Med. Chem. 34: 2373–2380PubMedCrossRefGoogle Scholar
  37. 37.
    Mazerski J., Martelli S. and Borowski E. 1998. The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: molecular dynamics simulations. Acta Biochim. Pol. 45: 1–11PubMedGoogle Scholar
  38. 38.
    Kaur M. 2006. Structural studies of anticancer drug mitoxantrone and its complex with DNA, Ph.D. ThesisGoogle Scholar
  39. 39.
    Rehn C. and Pindur U. 1996. Model building and molecular mechanics calculation of mitoxantrone–deoxytetranucleotide complexes: molecular foundation of DNA intercalation as cytostatic active principle. Monatsh. Chem. 127: 631–644CrossRefGoogle Scholar
  40. 40.
    Stewart L., Redinobo M. R., Qui X., Hol W. G. and Champoux J. J. 1998. A model for the mechanism of human topoisomerase 1. Science 279: 1534–1541PubMedCrossRefGoogle Scholar
  41. 41.
    Barthwal R., Monica, Awasthi P., Srivastava N., Sharma U., Kaur M. and Govil G. 2003. Structure of DNA hexamer sequence d-CGATCG by two-dimensional nuclear magnetic resonance spectroscopy and restrained molecular dynamics. J. Biomol. Struct. Dyn. 21: 407–423PubMedGoogle Scholar
  42. 42.
    Davies D. B., Eaton R. J., Baranovsky S. F. and Veselkov A. N. 2000. NMR investigation of the complexation of daunomycin with deoxytetranucleotides of different base sequence in aqueous solution. J. Biomol. Struct. Dyn. 17: 887–901PubMedGoogle Scholar
  43. 43.
    Yang X., Robinson H., Gao Y.-G. and Wang A. H. J. 2000. Binding of a macrocyclic bisacridine and ametantrone to CGTACG involves similar unusual intercalation platforms. Biochemistry 39: 10950–10957PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pamita Awasthi
    • 1
  • Shilpa Dogra
  • Lalit K. Awasthi
  • Ritu Barthwal
  1. 1.Department of ChemistryNational Institute of TechnologyHamirpurIndia

Personalised recommendations