Skip to main content

Enabling Heterogeneous Data Integration and Biomedical Event Prediction Through ICT: The Test Case of Cancer Reoccurrence

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 696))

Abstract

Early prediction of cancer reoccurrence constitutes a challenge for oncologists and surgeons. This chapter describes one ongoing experience, the EU-Project NeoMark, where scientists from different medical and biology research fields joined efforts with Information Technology experts to identify methods and algorithms that are able to early predict the reoccurrence risk for one of the most devastating tumors, the oral cavity squamous cell carcinoma (OSCC). The challenge of NeoMark is to develop algorithms able to identify a “signature” or bio-profile of the disease, by integrating multiscale and multivariate data from medical images, genomic profile from tissue and circulating cells RNA, and other medical parameters collected from patients before and after treatment. A limited number of relevant biomarkers will be identified and used in a real-time PCR device for early detection of disease reoccurrence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Boyle, P. Levin, editor. World Cancer Report. International Agency for Research on Cancer, 2008.

    Google Scholar 

  2. S. Steger, M. Erdt, G. Chiari, and G. Sakas. Feature extraction from medical images for an oral cancer reoccurrence prediction environment. In World Congress on Medical Physics and Biomedical Engineering, 2009.

    Google Scholar 

  3. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging, 16(2):187–198, 1997.

    Article  PubMed  CAS  Google Scholar 

  4. W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal volume registration by maximization of mutual information. Med Image Anal, 1(1):35–51, Mar 1996.

    Article  PubMed  Google Scholar 

  5. D. M. Honea, G. Yaorong, W. E. Snyder, P. F. Hemler, and D. J. Vining. Lymph node segmentation using active contours. volume 3034, pages 265–273. SPIE, 1997.

    Google Scholar 

  6. D. Maleike, M. Fabel, R. Tetzlaff, H. von Tengg-Kobligk, T. Heimann, H-P. Meinzer, and I. Wolf. Lymph node segmentation on CT images by a shape model guided deformable surface method. volume 6914, page 69141S. SPIE, 2008.

    Google Scholar 

  7. J. Rogowska, K. Batchelder, G. S. Gazelle, E. F. Halpern, W. Connor, and G. L. Wolf. Evaluation of selected two-dimensional segmentation techniques for computed tomography quantitation of lymph nodes. Invest Radiol, 31(3):138–145, Mar 1996.

    Article  PubMed  CAS  Google Scholar 

  8. G. Unal, G. Slabaugh, A. Ess, A. Yezzi, T. Fang, J. Tyan, M. Requardt, R. Krieg, R. Seethamraju, M. Harisinghani, and R. Weissleder. Semi-automatic lymph node segmentation in ln-mri. In Proc. IEEE International Conference on Image Processing, pages 77–80, 8–11 Oct. 2006.

    Google Scholar 

  9. J. Dornheim, H. Seim, B. Preim, I. Hertel, and G. Strauss. Segmentation of neck lymph nodes in CT datasets with stable 3d mass-spring models segmentation of neck lymph nodes. Acad Radiol, 14(11):1389–1399, Nov 2007.

    Article  PubMed  Google Scholar 

  10. G. Barequet and S. Har-peled. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J Algorithms, 38:82–91.

    Google Scholar 

  11. R. V. P. Hutter, M. Klimpfinger, L. H. Sobin, C. Wittekind, F. L. Greene, editor. TNM Atlas. Springer, Berlin, 5th edition, 2007.

    Google Scholar 

  12. G. H. John and R. Kohavi. Wrappers for feature subset selection. Artif Intell, 97:273–324, 1997.

    Article  Google Scholar 

  13. V. Kumar, P.-N. Tan, M. Steinbach. Introduction to data mining. Pearson Addison Wesley, Boston, 1st edition, 2006.

    Google Scholar 

  14. K. P. Murphy. Dynamic bayesian netoworks: Representation, inference and learning. University of California, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Picone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Picone, M. et al. (2011). Enabling Heterogeneous Data Integration and Biomedical Event Prediction Through ICT: The Test Case of Cancer Reoccurrence. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_37

Download citation

Publish with us

Policies and ethics