Skip to main content

Autosomal Lyonization of Replication Domains During Early Mammalian Development

  • Chapter

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 695)

Abstract

It has been exactly 50 years since it was discovered that duplication of the eukaryotic genome follows a defined temporal order as cells progress through S-phase. While the mechanism of this replication-timing program still remains a mystery, various correlations of this program with both static and dynamic properties of chromatin render it an attractive forum to explore previously impenetrable higher-order organization of chromosomes. Indeed, studies of DNA replication have provided a simple and straightforward approach to address physical organization of the genome, both along the length of the chromosome as well as in the context of the 3-dimensional space in the cell nucleus. In this chapter, we summarize the 50-years history of the pursuit for understanding the replication-timing program and its developmental regulation, primarily in mammalian cells. We begin with the discovery of the replication-timing program, discuss developmental regulation of this program during X-inactivation in females as well as on autosomes and then describe the recent findings from genome-wide dissection of this program, with special reference to what takes place during mouse embryonic stem cell differentiation. We make an attempt to interpret what these findings might represent and discuss their potential relevance to embryonic development. In doing so, we revive an old concept of “autosomal Lyonization” to describe “facultative heterochromatinization” and irreversible silencing of individual replication domains on autosomes reminiscent of the stable silencing of the inactive X chromosome, which takes place at a stage equivalent to the postimplantation epiblast in mice.

Keywords

  • Inner Cell Mass
  • Replication Timing
  • Nuclear Periphery
  • Long Intersperse Nuclear Element
  • Late Replication

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-7037-4_4
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-7037-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiratani I, Takebayashi S, Lu J et al. Replication timing and transcriptional control: beyond cause and effect—part II. Curr Opin Genet Dev 2009; 19:142–9.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Stamatoyannopoulos JA, Adzhubei I, Thurman RE et al. Human mutation rate associated with DNA replication timing. Nat Genet 2009; 41:393–5.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Chang BH, Smith L, Huang J et al. Chromosomes with delayed replication timing lead to checkpoint activation, delayed recruitment of Aurora B and chromosome instability. Oncogene 2007; 26:1852–61.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Tabancay AP Jr, Forsburg SL. Eukaryotic DNA replication in a chromatin context. Curr Top Dev Biol 2006; 76:129–84.

    CrossRef  CAS  PubMed  Google Scholar 

  5. MacAlpine DM, Bell SP. A genomic view of eukaryotic DNA replication. Chromosome Res 2005; 13:309–26.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Morishima A, Grumbach MM, Taylor JH. Asynchronous duplication of human chromosomes and the origin of sex chromatin. Proc Natl Acad Sci USA 1962; 48:756–63.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Hiratani I, Ryba T, Itoh M et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008; 6:e245.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Hiratani I, Ryba T, Itoh M et al. Genome-Wide Dynamics of Replication Timing Revealed by In Vitro Models of Mouse Embryogenesis. Genome Res 2010; 20:155–69.

    CrossRef  CAS  PubMed  Google Scholar 

  9. Holmquist GP. Role of replication time in the control of tissue-specific gene expression. Am J Hum Genet 1987; 40:151–73.

    CAS  PubMed  Google Scholar 

  10. Pope BD, Hiratani I, Gilbert DM. Domain-Wide Regulation of DNA Replication Timing During Mammalian Development. Chromosome Research 2010; 18:127–36.

    CrossRef  CAS  PubMed  Google Scholar 

  11. Taylor JH. Intracellular localization of labeled nucleic acid determined by autoradiographs. Science 1953; 118:555–7.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Meselson M, Stahl FW. The Replication of DNA in Escherichia Coli. Proc Natl Acad Sci USA 1958; 44:671–82.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Taylor JH, Woods PS, Hughes WL. The Organization and Duplication of Chromosomes as Reveals by Autoradiographic Studies Using Tritium-Labeled Thymidine. Proc Natl Acad Sci USA 1957; 43:122–8.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Taylor JH. The mode of chromosome duplication in Crepis capillaris. Exp Cell Res 1958; 15:350–7.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Taylor JH. Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J Biophys Biochem Cytol 1960; 7:455–64.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Latt SA. Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci USA 1973; 70:3395–9.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Latt SA. Fluorescent probes of chromosome structure and replication. Can J Genet Cytol 1977; 19:603–23.

    CAS  PubMed  Google Scholar 

  18. Stubblefield E. Analysis of the replication pattern of Chinese hamster chromosomes using 5-bromodeoxyuridine suppression of 33258 Hoechst fluorescence. Chromosoma 1975; 53:209–21.

    Google Scholar 

  19. Latt S A. Fluorescence analysis of late DNA replication in human metaphase chromosomes. Somatic Cell Genet 1975; 1:293–321.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Lima De Faria A. Incorporation of tritiated thymidine into meiotic chromosomes. Science 1959; 130:503–4.

    CrossRef  Google Scholar 

  21. Epplen JT, Siebers JW, Vogel W. DNA replication patterns of human chromosomes from fibroblasts and amniotic fluid cells revealed by a Giemsa staining technique. Cytogenet Cell Genet 1975; 15:177–85.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Stambrook PJ, Flickinger RA. Changes in chromosomal DNA replication patterns in developing frog embryos. J Exp Zool 1970; 174:101–13.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Barr ML, Bertram EG. A morphological distinction between neurones of the male and female and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 1949; 163:676.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961; 190:372–3.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848–67.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Deakin JE, Chaumeil J, Hore TA et al. Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Res 2009; 17:671–85.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Ho KK, Deakin JE, Wright ML et al. Replication asynchrony and differential condensation of X chromosomes in female platypus (Ornithorhynchus anatinus). Reprod Fertil Dev 2009; 21:952–63.

    CrossRef  PubMed  Google Scholar 

  28. Koina E, Chaumeil J, Greaves IK et al. Specific patterns of histone marks accompany X chromosome inactivation in a marsupial. Chromosome Res 2009; 17:115–26.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Takagi N, Sugawara O, Sasaki M. Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 1982; 85:275–86.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Lock LF, Takagi N, Martin GR. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell 1987; 48:39–46.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol 2009; 21:359–66.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Keohane AM, O’Neill LP, Belyaev ND, Lavender JS, Turner BM. X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev Biol 1996; 180:618–30.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Chaumeil J, Okamoto I, Guggiari M et al. Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet Genome Res 2002; 99:75–84.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Wutz A, Jaenisch R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 2000; 5:695–705.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Sugawara O, Takagi N, Sasaki M. Correlation between X-chromosome inactivation and cell differentiation in female preimplantation mouse embryos. Cytogenet Cell Genet 1985; 39:210–9.

    CrossRef  CAS  PubMed  Google Scholar 

  36. Snow MHL. Gastrulation in the mouse: growth and regionalization of the epiblast. J Embryol Exp Morphol 1977; 42:293–303.

    Google Scholar 

  37. Balazs I, Brown EH, Schildkraut CL. The temporal order of replication of some DNA cistrons. Cold Spring Harb Symp Quant Biol 1974; 38:239–45.

    CAS  PubMed  Google Scholar 

  38. Burke W, Fangman WL. Temporal order in yeast chromosome replication. Cell 1975; 5:263–9.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Hatton KS, Dhar V, Brown EH et al. Replication program of active and inactive multigene families in mammalian cells. Mol Cell Biol 1988; 8:2149–58.

    CAS  PubMed  Google Scholar 

  40. Goldman MA, Holmquist GP, Gray MC et al. Replication timing of genes and middle repetitive sequences. Science 1984; 224:686–92.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Epner E, Reik A, Cimbora D et al. The beta-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse beta-globin locus. Mol Cell 1998; 2:447–55.

    CrossRef  CAS  PubMed  Google Scholar 

  42. Taljanidisz J, Popowski J, Sarkar N. Temporal order of gene replication in Chinese hamster ovary cells. Mol Cell Biol 1989; 9:2881–9.

    CAS  PubMed  Google Scholar 

  43. Gilbert DM. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc Natl Acad Sci USA 1986; 83:2924–8.

    CrossRef  CAS  PubMed  Google Scholar 

  44. Hiratani I, Leskovar A, Gilbert DM. Differentiation-induced replication-timing changes are restricted to AT-rich/ long interspersed nuclear element (LINE)-rich isochores. Proc Natl Acad Sci USA 2004; 101:16861–6.

    CrossRef  CAS  PubMed  Google Scholar 

  45. Perry P, Sauer S, Billon N et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 2004; 3:1645–50.

    CAS  PubMed  Google Scholar 

  46. Gilbert DM. Replication timing and transcriptional control: beyond cause and effect. Curr Opin Cell Biol 2002; 14:377–83.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Azuara V, Brown KE, Williams RR et al. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat Cell Biol 2003; 5:668–74.

    CrossRef  CAS  PubMed  Google Scholar 

  48. Raghuraman MK, Winzeler EA, Collingwood D et al. Replication dynamics of the yeast genome. Science 2001; 294:115–21.

    CrossRef  CAS  PubMed  Google Scholar 

  49. Hayashi M, Katou Y, Itoh T et al. Genome-wide localization of preRC sites and identification of replication origins in fission yeast. EMBO J 2007; 26:1327–39.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Schubeler D, Scalzo D, Kooperberg C et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 2002; 32:438–42.

    CrossRef  PubMed  CAS  Google Scholar 

  51. MacAlpine DM, Rodriguez HK, Bell SP. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 2004; 18:3094–105.

    CrossRef  CAS  PubMed  Google Scholar 

  52. Woodfine K, Fiegler H, Beare DM et al. Replication timing of the human genome. Hum Mol Genet 2004; 13:191–202.

    CrossRef  CAS  PubMed  Google Scholar 

  53. White EJ, Emanuelsson O, Scalzo D et al. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc Natl Acad Sci USA 2004; 101:17771–6.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Jeon Y, Bekiranov S, Karnani N et al. Temporal profile of replication of human chromosomes. Proc Natl Acad Sci USA 2005; 102:6419–24.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Karnani N, Taylor C, Malhotra A et al. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res 2007; 17:865–76.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Farkash-Amar S, Lipson D, Polten A et al. Global organization of replication time zones of the mouse genome. Genome Res 2008; 18:1562–70.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Schwaiger M, Stadler MB, Bell O et al. Chromatin state marks cell-type-and gender-specific replication of the Drosophila genome. Genes Dev 2009; 23:589–601.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Desprat R, Thierry-Mieg D, Lailler N et al. Predictable Dynamic Program of Timing of DNA Replication in Human Cells. Genome Res 2009; 19:2288–99.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Gilbert DM. Replication timing and metazoan evolution. Nat Genet 2002; 32:336–7.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Schmegner C, Hameister H, Vogel W et al. Isochores and replication time zones: a perfect match. Cytogenet Genome Res 2007; 116:167–72.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Grasser F, Neusser M, Fiegler H et al. Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 2008; 121:1876–86.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Costantini M, Bernardi G. Replication timing, chromosomal bands and isochores. Proc Natl Acad Sci USA 2008; 105:3433–7.

    CrossRef  CAS  PubMed  Google Scholar 

  63. Brons IG, Smithers LE, Trotter MW et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007; 448:191–5.

    CrossRef  CAS  PubMed  Google Scholar 

  64. Tesar PJ, Chenoweth JG, Brook FA et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448:196–9.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 2007; 8:588–600.

    CrossRef  CAS  PubMed  Google Scholar 

  66. Wu J-R, Gilbert DM. A distinct G1 step required to specify the chinese hamster DHFR replication origin. Science 1996; 271:1270–2.

    CrossRef  CAS  PubMed  Google Scholar 

  67. Dimitrova DS, Gilbert DM. The spatial position and replication timing of chromosomal domains are both established in early G1-phase. Mol Cell 1999; 4:983–93.

    CrossRef  CAS  PubMed  Google Scholar 

  68. Li F, Chen J, Solessio E et al. Spatial distribution and specification of mammalian replication origins during G1 phase. J Cell Biol 2003; 161:257–66.

    CrossRef  CAS  PubMed  Google Scholar 

  69. Dimitrova DS, Prokhorova TA, Blow JJ et al. Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 2002; 115:51–9.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Yokochi T, Poduch K, Ryba T et al. G9a Selectively Represses a Class of Late-Replicating Genes at the Nuclear Periphery. Proc Natl Acad Sci USA 2009; 106:19363–8.

    CrossRef  CAS  PubMed  Google Scholar 

  71. Wu R, Singh PB, Gilbert DM. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J Cell Biol 2006; 174:185–94.

    CrossRef  CAS  PubMed  Google Scholar 

  72. Jorgensen HF, Azuara V, Amoils S et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol 2007; 8:R169.

    CrossRef  PubMed  CAS  Google Scholar 

  73. Hayashi MT, Takahashi TS, Nakagawa T et al. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 2009; 11:357–62.

    CrossRef  CAS  PubMed  Google Scholar 

  74. Flickinger R. Replication timing and cell differentiation. Differentiation 2001; 69:18–26.

    CrossRef  CAS  PubMed  Google Scholar 

  75. Panning MM, Gilbert DM. Spatio-temporal organization of DNA replication in murine embryonic stem, primary and immortalized cells. J Cell Biochem 2005; 95:74–82.

    CrossRef  CAS  PubMed  Google Scholar 

  76. Wu R, Terry AV, Singh PB et al. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 2005; 16:2872–81.

    CrossRef  CAS  PubMed  Google Scholar 

  77. Gilbert DM, Gasser SM. Nuclear Structure and DNA Replication. In: DePamphilis ML, ed. DNA Replication and Human Disease. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2006.

    Google Scholar 

  78. Berezney R, Dubey DD, Huberman JA. Heterogeneity of eukaryotic replicons, replicon clusters and replication foci. Chromosoma 2000; 108:471–84.

    CrossRef  CAS  PubMed  Google Scholar 

  79. Williams RR, Azuara V, Perry P et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 2006; 119:132–40.

    CrossRef  CAS  PubMed  Google Scholar 

  80. Lieberman-Aiden E, van Berkum NL, Williams L et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 2009; 326:289–93.

    CrossRef  CAS  PubMed  Google Scholar 

  81. Bazett-Jones DP, Li R, Fussner E et al. Elucidating chromatin and nuclear domain architecture with electron spectroscopic imaging. Chromosome Res 2008; 16:397–412.

    CrossRef  CAS  PubMed  Google Scholar 

  82. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132:567–82.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Rathjen J, Lake JA, Bettess MD et al. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 1999; 112 (Pt 5):601–12.

    CAS  PubMed  Google Scholar 

  84. Gardner RL, Brook FA. Reflections on the biology of embryonic stem (ES) cells. Int J Dev Biol 1997; 41:235–43.

    CAS  PubMed  Google Scholar 

  85. Pfister S, Steiner KA, Tam PP. Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr Patterns 2007; 7:558–73.

    CrossRef  CAS  PubMed  Google Scholar 

  86. Guo G, Yang J, Nichols J et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 2009; 136:1063–9.

    CrossRef  CAS  PubMed  Google Scholar 

  87. Lyon MF, Rastan S. Parental source of chromosome imprinting and its relevance for X chromosome inactivation. Differentiation 1984; 26:63–7.

    CrossRef  CAS  PubMed  Google Scholar 

  88. Maherali N, Sridharan R, Xie W et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1:55–70.

    CrossRef  CAS  PubMed  Google Scholar 

  89. Sridharan R, Tchieu J, Mason MJ et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009; 136:364–77.

    CrossRef  CAS  PubMed  Google Scholar 

  90. Li F, Chen J, Izumi M et al. The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J Cell Biol 2001; 154:283–92.

    CrossRef  CAS  PubMed  Google Scholar 

  91. Raghuraman M, Brewer B, Fangman W. Cell cycle-dependent establishment of a late replication program. Science 1997; 276:806–9.

    CrossRef  CAS  PubMed  Google Scholar 

  92. Walter J, Schermelleh L, Cremer M et al. Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 2003; 160:685–97.

    CrossRef  CAS  PubMed  Google Scholar 

  93. Thomson I, Gilchrist S, Bickmore WA et al. The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 2004; 14:166–72.

    CrossRef  CAS  PubMed  Google Scholar 

  94. Kumaran RI, Spector DL. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 2008; 180:51–65.

    CrossRef  CAS  PubMed  Google Scholar 

  95. Reddy KL, Zullo JM, Bertolino E et al. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 2008; 452:243–7.

    CrossRef  CAS  PubMed  Google Scholar 

  96. Zhang J, Xu F, Hashimshony T et al. Establishment of transcriptional competence in early and late S phase. Nature 2002; 420:198–202.

    CrossRef  CAS  PubMed  Google Scholar 

  97. Gilbert DM, Cohen SN. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S-phase of the cell cycle. Cell 1987; 50:59–68.

    CrossRef  CAS  PubMed  Google Scholar 

  98. Lande-Diner L, Zhang J, Cedar H. Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol Cell 2009; 34:767–74.

    CrossRef  CAS  PubMed  Google Scholar 

  99. Versini G, Comet I, Wu M et al. The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J 2003; 22:1939–49.

    CrossRef  CAS  PubMed  Google Scholar 

  100. McCune HJ, Danielson LS, Alvino GM et al. The Temporal Program of Chromosome Replication: Genomewide Replication in clb5{Delta} Saccharomyces cerevisiae. Genetics 2008; 180:1833–47.

    CrossRef  CAS  PubMed  Google Scholar 

  101. Hiratani I, Gilbert DM. Replication timing as an epigenetic mark. Epigenetics 2009; 4:93–7.

    CrossRef  CAS  PubMed  Google Scholar 

  102. Gilbert DM. Temporal order of DNA replication in eukaryotic cells: it’s relationship to gene expression. Genetics. Stanford: Stanford University, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hiratani, I., Gilbert, D.M. (2010). Autosomal Lyonization of Replication Domains During Early Mammalian Development. In: Meshorer, E., Plath, K. (eds) The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, vol 695. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7037-4_4

Download citation