Adult Stem Cels and Their Niches

  • Francesca Ferraro
  • Cristina Lo Celso
  • David Scadden
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 695)


Stem cells participate in dynamic physiologic systems that dictate the outcome of developmental events and organismal stress, Since these cells are fundamental to tissue maintenance and repair, the signals they receive play a critical role in the integrity of the organism. Much work has focused on stem cell identification and the molecular pathways involved in their regulation. Yet, we understand little about how these pathways achieve physiologically responsive stem cell functions. This chapter will review the state of our understanding of stem cells in the context of their microenvironment regarding the relation between stem cell niche dysfunction, carcinogenesis and aging.


Stem Cell Hematopoietic Stem Cell Neural Stem Cell Hair Follicle Adult Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4(1-2):7–25.PubMedGoogle Scholar
  2. 2.
    Xie T. Spradling AC. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 1998; 94(2):251–260.PubMedCrossRefGoogle Scholar
  3. 3.
    Kimble JE. White JG. On the control of germ cell development in Caenorhabditis elegans. Dev Biol 1981; 81(2):208–219.PubMedCrossRefGoogle Scholar
  4. 4.
    Katayama Y. Battista M. Kao WM et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124(2):407–421.PubMedCrossRefGoogle Scholar
  5. 5.
    Conboy IM. Conboy MJ. Wagers AJ et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005; 433(7027):760–764.PubMedCrossRefGoogle Scholar
  6. 6.
    Brack AS. Conboy MJ. Roy S et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007; 317(5839):807–810.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu Y. Ghosh P. Charnay P et al. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 2002; 296(5569):920–922.PubMedCrossRefGoogle Scholar
  8. 8.
    Trimboli AJ. Cantemir-Stone CZ. Li F et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 2009; 461(7267):1084–1091.PubMedCrossRefGoogle Scholar
  9. 9.
    Mayack SR. Shadrach JL. Kim FS et al. Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 2010; 463(7280):495–500.PubMedCrossRefGoogle Scholar
  10. 10.
    Calvi LM. Adams GB. Weibrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425(6960):841–846.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang J. Niu C. Ye L et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425(6960):836–841.PubMedCrossRefGoogle Scholar
  12. 12.
    Kiel MJ. Yilmaz OH. Iwashita T et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121(7):1109–1121.PubMedCrossRefGoogle Scholar
  13. 13.
    Sipkins DA. Wei X. Wu JW et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435(7044):969–973.PubMedCrossRefGoogle Scholar
  14. 14.
    Visnjic D. Kalajzic Z. Rowe DW et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004; 103(9):3258–3264.PubMedCrossRefGoogle Scholar
  15. 15.
    Hooper AT. Butler JM. Nolan DJ et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4(3):263–274.PubMedCrossRefGoogle Scholar
  16. 16.
    Jung Y. Wang J. Song J et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion. homing and engraftment following transplantation. Blood 2007; 110(1):82–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Cotsarelis G. Sun TT. Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle and skin carcinogenesis. Cell 1990; 61(7):1329–1337.PubMedCrossRefGoogle Scholar
  18. 18.
    Levy V. Lindon C. Harfe BD, et al. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 2005; 9(6):855–861.PubMedCrossRefGoogle Scholar
  19. 19.
    Blanpain C. Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10(3):207–217.PubMedCrossRefGoogle Scholar
  20. 20.
    Doetsch F. Caille I. Lim DA, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97(6):703–716.PubMedCrossRefGoogle Scholar
  21. 21.
    Palmer TD. Takahashi J. Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997; 8(6):389–404.PubMedCrossRefGoogle Scholar
  22. 22.
    Shen Q. Goderie SK. Jin L et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004; 304(5675):1338–1340.PubMedCrossRefGoogle Scholar
  23. 23.
    Barker N. van Es JH. Kuipers J et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449(7165):1003–1007.PubMedCrossRefGoogle Scholar
  24. 24.
    Mills JC. Gordon JI. The intestinal stem cell niche: there grows the neighborhood. Proc Natl Acad Sci USA 2001; 98(22):12334–12336.PubMedCrossRefGoogle Scholar
  25. 25.
    Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9:493–495.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuang S. Kuroda K. Le Grand F et al. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 2007; 129(5):999–1010.PubMedCrossRefGoogle Scholar
  27. 27.
    Reya T. Duncan AW. Ailles L et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423(6938):409–414.PubMedCrossRefGoogle Scholar
  28. 28.
    Brittan M. Wright NA. Gastrointestinal stem cells. J Pathol 2002; 197(4):492–509.PubMedCrossRefGoogle Scholar
  29. 29.
    Brittingham J. Phiel C. Trzyna WC et al. Identification of distinct molecular phenotypes in cultured gastrointestinal smooth muscle cells. Gastroenterology 1998; 115(3):605–617.PubMedCrossRefGoogle Scholar
  30. 30.
    Huelsken J. Vogel R. Erdmann B et al. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105(4):533–545.PubMedCrossRefGoogle Scholar
  31. 31.
    Merrill BJ. Gat U. DasGupta R et al. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 2001; 15(13):1688–1705.PubMedCrossRefGoogle Scholar
  32. 32.
    Niemann C. Owens DM. Hulsken J et al. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 2002; 129(1):95–109.PubMedGoogle Scholar
  33. 33.
    Chenn A. Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297(5580):365–369.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen D. McKearin D. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol 2003; 13(20):1786–1791.PubMedCrossRefGoogle Scholar
  35. 35.
    Botchkarev VA. Botchkareva NV. Nakamura M et al. Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J 2001; 15(12):2205–2214.CrossRefGoogle Scholar
  36. 36.
    Kulessa H. Turk G. Hogan BL. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J 2000; 19(24):6664–6674.PubMedCrossRefGoogle Scholar
  37. 37.
    Temple S. The development of neural stem cells. Nature 2001; 414(6859):112–117.PubMedCrossRefGoogle Scholar
  38. 38.
    Adams GB. Chabner KT. Alley IR et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439(7076):599–603.PubMedCrossRefGoogle Scholar
  39. 39.
    Ito K. Hirao A. Arai F et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431(7011):997–1002.PubMedCrossRefGoogle Scholar
  40. 40.
    Wagers AJ. Allsopp RC. Weissman IL. Changes in integrin expression are associated with altered homing properties of Lin(-/lo)Thy1.1(lo)Sca-1(+)c-kit(+) hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Exp Hematol 2002; 30(2):176–185.PubMedCrossRefGoogle Scholar
  41. 41.
    Brakebusch C. Grose R. Quondamatteo F et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J 2000; 19(15):3990–4003.PubMedCrossRefGoogle Scholar
  42. 42.
    Jones PH. Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 1993; 73(4):713–724.PubMedCrossRefGoogle Scholar
  43. 43.
    Jensen UB. Lowell S. Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 1999; 126(11):2409–2418.PubMedGoogle Scholar
  44. 44.
    Sherwood RI. Christensen JL. Conboy IM et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 2004; 119(4):543–554.PubMedCrossRefGoogle Scholar
  45. 45.
    Bungartz G. Stiller S. Bauer M et al. Adult murine hematopoiesis can proceed without beta1 and beta7 integrins. Blood 2006; 108(6):1857–1864.PubMedCrossRefGoogle Scholar
  46. 46.
    Fleming WH. Alpern EJ. Uchida N et al. Steel factor influences the distribution and activity of murine hematopoietic stem cells in vivo. Proc Natl Acad Sci USA 1993; 90(8):3760–3764.PubMedCrossRefGoogle Scholar
  47. 47.
    Sugiyama T. Kohara H. Noda M et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25(6):977–988.PubMedCrossRefGoogle Scholar
  48. 48.
    Garcion E. Halilagic A. Faissner A et al. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 2004; 131(14):3423–3432.PubMedCrossRefGoogle Scholar
  49. 49.
    Ohta M. Sakai T. Saga Y et al. Suppression of hematopoietic activity in tenascin-C-deficient mice. Blood 1998; 91(11):4074–4083.PubMedGoogle Scholar
  50. 50.
    Stier S. Ko Y. Forkert R et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201(11):1781–1791.PubMedCrossRefGoogle Scholar
  51. 51.
    Nilsson SK. Johnston HM. Whitty GA et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106(4):1232–1239.PubMedCrossRefGoogle Scholar
  52. 52.
    Engler AJ. Sen S. Sweeney HL et al. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4):677–689.PubMedCrossRefGoogle Scholar
  53. 53.
    Deng W. Lin H. Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol 1997; 189(1):79–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Yamashita YM. Jones DL. Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003; 301(5639):1547–1550.PubMedCrossRefGoogle Scholar
  55. 55.
    Irintchev A. Zeschnigk M. Starzinski-Powitz A et al. Expression pattern of M-cadherin in normal, denervated and regenerating mouse muscles. Dev Dyn 1994; 199(4):326–337.PubMedGoogle Scholar
  56. 56.
    Hollnagel A. Grund C. Franke WW et al. The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol 2002; 22(13):4760–4770.PubMedCrossRefGoogle Scholar
  57. 57.
    Hooper AT. Butler J. Petit I et al. Does N-cadherin regulate interaction of hematopoietic stem cells with their niches? Cell Stem Cell 2007; 1(2):127–129.PubMedCrossRefGoogle Scholar
  58. 58.
    Kiel MJ. Radice GL. Morrison SJ. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 2007; 1(2):204–217.PubMedCrossRefGoogle Scholar
  59. 59.
    Kai T. Spradling A. An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc Natl Acad Sci USA 2003; 100(8):4633–4638.PubMedCrossRefGoogle Scholar
  60. 60.
    Brawley C. Matunis E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 2004; 304(5675):1331–1334.PubMedCrossRefGoogle Scholar
  61. 61.
    Ito M. Liu Y. Yang Z et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 2005; 11(12):1351–1354.PubMedCrossRefGoogle Scholar
  62. 62.
    Silva-Vargas V. Lo Celso C. Giangreco A et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 2005; 9(1):121–131.PubMedCrossRefGoogle Scholar
  63. 63.
    Jiang H. Patel PH. Kohlmaier A et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 2009; 137(7):1343–1355.PubMedCrossRefGoogle Scholar
  64. 64.
    Bischoff R. Interaction between satellite cells and skeletal muscle fibers. Development 1990; 109(4):943–952.PubMedGoogle Scholar
  65. 65.
    Mayack SR. Wagers AJ. Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood 2008; 112(3):519–531.PubMedCrossRefGoogle Scholar
  66. 66.
    Dominici M. Rasini V. Bussolari R et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 2009; 114(11):2333–2343.PubMedCrossRefGoogle Scholar
  67. 67.
    Peled A. Petit I. Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/ SCID mice on CXCR4. Science 1999;283(5403):845–848.PubMedCrossRefGoogle Scholar
  68. 68.
    Kortesidis A. Zannettino A. Isenmann S et al. Stromal-derived factor-1 promotes the growth, survival and development of human bone marrow stromal stem cells. Blood 2005; 105(10):3793–3801.PubMedCrossRefGoogle Scholar
  69. 69.
    Jin DK. Shido K. Kopp HG et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006; 12(5):557–567.PubMedCrossRefGoogle Scholar
  70. 70.
    Kohler A. Schmithorst V. Filippi MD et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114(2):290–298.PubMedCrossRefGoogle Scholar
  71. 71.
    Lewandowski D. Barroca V. Duconge F et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood 2009.Google Scholar
  72. 72.
    Lo Celso C. Fleming HE. Wu JW et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457(7225):92–96.PubMedCrossRefGoogle Scholar
  73. 73.
    Xie Y. Yin T. Wiegraebe W et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457(7225):97–101.PubMedCrossRefGoogle Scholar
  74. 74.
    Voog J. Jones DL. Stem Cells and the Niche: a dynamic duo. Cell Stem Cell, in press 2010; 6.Google Scholar
  75. 75.
    Biteau B. Hochmuth CE. Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 2008; 3(4):442–455.PubMedCrossRefGoogle Scholar
  76. 76.
    Janzen V. Forkert R. Fleming HE et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443(7110):421–426.PubMedGoogle Scholar
  77. 77.
    Boyle M. Wong C. Rocha M et al. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 2007; 1(4):470–478.PubMedCrossRefGoogle Scholar
  78. 78.
    Hsu HJ. Drummond-Barbosa D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci USA. 2009; 106(4):1117–1121.PubMedCrossRefGoogle Scholar
  79. 79.
    Pan L. Chen S. Weng C et al. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 2007; 1(4):458–469.PubMedCrossRefGoogle Scholar
  80. 80.
    Ryu BY. Orwig KE. Oatley JM et al. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 2006; 24(6):1505–1511.PubMedCrossRefGoogle Scholar
  81. 81.
    Liang Y. Van Zant G. Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 2005; 106(4):1479–1487.PubMedCrossRefGoogle Scholar
  82. 82.
    Rossi DJ. Bryder D. Zahn JM et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 2005; 102(26):9194–9199.PubMedCrossRefGoogle Scholar
  83. 83.
    Ohlstein B. Spradling A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 2007; 315(5814):988–992.PubMedCrossRefGoogle Scholar
  84. 84.
    Brack AS. Rando TA. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev Fall 2007; 3(3):226–237.CrossRefGoogle Scholar
  85. 85.
    Wagner W. Horn P. Bork S et al. Aging of hematopoietic stem cells is regulated by the stem cell niche. Exp Gerontol 2008; 43(11):974–980.PubMedCrossRefGoogle Scholar
  86. 86.
    Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1:571–573.CrossRefGoogle Scholar
  87. 87.
    Folkman J. Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 1975; 82(1):96–100.PubMedGoogle Scholar
  88. 88.
    Bergers G. Javaherian K. Lo KM et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284(5415):808–812.PubMedCrossRefGoogle Scholar
  89. 89.
    Abdelrahim M. Konduri S. Basha R et al.Angiogenesis: an update and potential drug approaches (review). Int J Oncol 2010; 36(1):5–18.PubMedGoogle Scholar
  90. 90.
    Sneddon JB. Zhen HH. Montgomery K et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci USA 2006; 103(40):14842–14847.PubMedCrossRefGoogle Scholar
  91. 91.
    Hu M. Yao J. Carroll DK et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 2008; 13(5):394–406.PubMedCrossRefGoogle Scholar
  92. 92.
    Mantovani A. Romero P. Palucka AK et al. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 2008; 371(9614):771–783.PubMedCrossRefGoogle Scholar
  93. 93.
    Raulet DH. Guerra N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 2009; 9(8):568–580.PubMedCrossRefGoogle Scholar
  94. 94.
    Walkley CR. Olsen GH. Dworkin S et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007; 129(6):1097–1110.PubMedCrossRefGoogle Scholar
  95. 95.
    Walkley CR. Shea JM. Sims NA et al. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 2007; 129(6):1081–1095.PubMedCrossRefGoogle Scholar
  96. 96.
    Lane SW. Sykes SM. Shahrour F et al. The APCmin mouse has altered hematopoietic stem cell function and provides a model for cell extrinsic MPD/MDS. Blood, in press. 2010.Google Scholar
  97. 97.
    Raaijmakers MHGP. Mukherjee S. Guo S et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukemia Nature, 2010.Google Scholar
  98. 98.
    Krause DS. Lazarides K. von Andrian UH et al. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12(10):1175–1180.PubMedCrossRefGoogle Scholar
  99. 99.
    Iwamoto S. Mihara K. Downing JR et al. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007; 117(4):1049–1057.PubMedCrossRefGoogle Scholar
  100. 100.
    Williams RT. den Besten W. Sherr CJ. Cytokine-dependent imatinib resistance in mouse BCR-ABL+, Arf-null lymphoblastic leukemia. Genes Dev 2007; 21(18):2283–2287.PubMedCrossRefGoogle Scholar
  101. 101.
    Colmone A. Amorim M. Pontier AL et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322(5909):1861–1865.PubMedCrossRefGoogle Scholar
  102. 102.
    Qiang YW. Chen Y. Stephens O et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 2008; 112(1):196–207.PubMedCrossRefGoogle Scholar
  103. 103.
    Wels J. Kaplan RN. Rafii S et al. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 2008; 22(5):559–574.PubMedCrossRefGoogle Scholar
  104. 104.
    Olaso E. Salado C. Egilegor E et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 2003; 37(3):674–685.PubMedCrossRefGoogle Scholar
  105. 105.
    Olaso E. Santisteban A. Bidaurrazaga J et al. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 1997; 26(3):634–642.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Francesca Ferraro
    • 1
    • 2
    • 3
  • Cristina Lo Celso
    • 4
  • David Scadden
    • 1
    • 2
  1. 1.Harvard Stem Cell InstituteCambridgeUSA
  2. 2.Department of Stem Cell and Regenerative BiologyHarvard UniversityBostonUSA
  3. 3.Center for Regenerative MedicineMassachusetts General Hospital and Harvard MedicalCambridgeUSA
  4. 4.Division of Cell and Molecular BiologyImperial College LondonLondonEngland UK

Personalised recommendations