Skip to main content

Genome-Wide Association Studies and Human Population Obesity

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

  • 1305 Accesses

Abstract

In the past 3 years, genome-wide association (GWA) studies have revolutionized the field of obesity genetics by establishing at least 15 new genetic-susceptibility loci for common obesity. GWA studies are hypothesis-generating in that they interrogate hundreds of thousands of genetic variants across the whole human genome for association with a disease or trait of interest without an a priori hypothesis. As such, GWA studies hope to identify new genetic loci previously unknown to have a role in the disease, which can instigate new hypotheses leading to an increased biological understanding of underlying mechanisms. A GWA typically consists of a discovery and a replication stage. The discovery stage is the actual genome-wide scan, followed by the replication stage that validates the most significant findings from the discovery stage. So far, three waves of GWA studies for obesity-related traits have been carried out, characterized by increasing sample sizes and by an increased number of established genetic loci. Despite the enormous progress in the field, the currently established 15 loci explain only a small part of the inter-individual variation in BMI (<2%). Many more loci remain to be uncovered to account for the 40–70% heritability estimates. Establishing the underlying biological mechanisms of these new loci and pinpointing the causal variants remain the challenge ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. Jul 1997;27(4):325–51.

    Article  PubMed  CAS  Google Scholar 

  2. Lander ES, Schork NJ. Genetic dissection of complex traits. Science. Sep 1994;265(5181):2037–48.

    Article  PubMed  CAS  Google Scholar 

  3. Loos RJ. Recent progress in the genetics of common obesity. Br J Clin Pharmacol. Dec 2009;68(6):811–29.

    Article  PubMed  CAS  Google Scholar 

  4. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. Mar 2008;299(11):1335–44.

    Article  PubMed  CAS  Google Scholar 

  5. International human genome sequencing consortium. Finishing the euchromatic sequence of the human genome. Nature Oct 2004;431(7011):931–45.

    Article  Google Scholar 

  6. A haplotype map of the human genome. Nature Oct 2005;437(7063):1299–320.

    Google Scholar 

  7. Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. Oct 2007;449(7164):851–61.

    Article  PubMed  CAS  Google Scholar 

  8. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. Oct 2008;17(R2):R122–8.

    Article  PubMed  Google Scholar 

  9. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. May 2007;316(5826):889–94.

    Article  PubMed  CAS  Google Scholar 

  10. Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. Jul 2007;3(7):e115.

    Article  PubMed  Google Scholar 

  11. Hinney A, Nguyen TT, Scherag A, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2(12):e1361.

    Article  PubMed  Google Scholar 

  12. Loos RJ, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. Jun 2008;40(6):768–75.

    Article  PubMed  CAS  Google Scholar 

  13. Chambers JC, Elliott P, Zabaneh D, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet. Jun 2008;40(6):716–8.

    Article  PubMed  CAS  Google Scholar 

  14. Meyre D, Delplanque J, Chevre JC, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet. Feb 2009;41(2):157–9.

    Article  PubMed  CAS  Google Scholar 

  15. Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. Jan 2009;41(1):18–24.

    Article  PubMed  CAS  Google Scholar 

  16. Willer CJ, Speliotes EK, Loos RJ, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. Jan 2009;41(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  17. Lindgren CM, Heid IM, Randall JC, et al. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet. Jun 2009;5(6):e1000508.

    Article  PubMed  Google Scholar 

  18. Heard-Costa NL, Zillikens MC, Monda KL, et al. NRXN3 is a novel locus for waist circumference: a genome-wide association study from the CHARGE Consortium. PLoS Genet. Jun 2009;5(6):e1000539.

    Article  PubMed  Google Scholar 

  19. Huszar D, Lynch CA, Fairchild-Huntress V, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. Jan 1997;88(1):131–41.

    Article  PubMed  CAS  Google Scholar 

  20. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. Mar 2003;348(12):1085–95.

    Article  PubMed  CAS  Google Scholar 

  21. Li S, Zhao JH, Luan J, et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr. Jan 2010;91(1):184–90.

    Article  PubMed  CAS  Google Scholar 

  22. Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. Nov 2007;318(5855):1469–72.

    Article  PubMed  CAS  Google Scholar 

  23. Sanchez-Pulido L, Andrade-Navarro MA The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem. 2007;8:23.

    Article  PubMed  Google Scholar 

  24. Fredriksson R, Hagglund M, Olszewski PK, et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology. May 2008;149(5):2062–71.

    Article  PubMed  CAS  Google Scholar 

  25. Stratigopoulos G, Padilla SL, LeDuc CA, et al. Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol. Apr 2008;294(4):R1185–96.

    Article  PubMed  CAS  Google Scholar 

  26. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. Dec 2008;359(24):2558–66.

    Article  PubMed  CAS  Google Scholar 

  27. Haupt A, Thamer C, Staiger H, et al. Variation in the FTO gene influences food intake but not energy expenditure. Exp Clin Endocrinol Diab. Apr 2009;117(4):194–7.

    Article  CAS  Google Scholar 

  28. Timpson NJ, Emmett PM, Frayling TM, et al. The fat mass- and obesity-associated locus and dietary intake in children. Am J Clin Nutr. Oct 2008;88(4):971–8.

    PubMed  CAS  Google Scholar 

  29. Wardle J, Carnell S, Haworth CM, Farooqi IS, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. Sep 2008;93(9):3640–3.

    Article  PubMed  CAS  Google Scholar 

  30. Wardle J, Llewellyn C, Sanderson S, Plomin R. The FTO gene and measured food intake in children. Int J Obes (Lond). Jan 2009;33(1):42–5.

    Article  CAS  Google Scholar 

  31. Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity. Nature. Apr 16 2009;458(7240):894–8.

    Article  PubMed  CAS  Google Scholar 

  32. Berentzen T, Kring SI, Holst C, et al. Lack of association of fatness-related FTO gene variants with energy expenditure or physical activity. J Clin Endocrinol Metab. Jul 2008;93(7):2904–8.

    Article  PubMed  CAS  Google Scholar 

  33. Hakanen M, Raitakari OT, Lehtimäki T, et al. FTO genotype is associated with body mass index after the age of 7 years but not with energy intake or leisure-time physical activity. J Clin Endocrinol Metab. Apr 2009;94(4):1281–7.

    Article  PubMed  CAS  Google Scholar 

  34. Rampersaud E, Mitchell BD, Pollin TI, et al. Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch Intern Med. Sep 2008;168(16):1791–7.

    Article  PubMed  Google Scholar 

  35. Wahlen K, Sjolin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res. Mar 2008;49(3):607–11.

    Article  PubMed  Google Scholar 

  36. Ren D, Zhou Y, Morris D, Li M, Li Z, Rui L. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J Clin Invest. Feb 2007;117(2):397–406.

    Article  PubMed  CAS  Google Scholar 

  37. Shugart YY, Chen L, Day IN, et al. Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur J Hum Genet. Aug 2009;17(8):1050–5.

    Article  PubMed  CAS  Google Scholar 

  38. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science. Jun 2002;296(5576):2225–9.

    Article  PubMed  CAS  Google Scholar 

  39. Moore AF, Florez JC. Genetic susceptibility to type 2 diabetes and implications for antidiabetic therapy. Annu Rev Med. Feb 2008;59:95–111.

    Article  PubMed  CAS  Google Scholar 

  40. Hardy R, Wills AK, Wong A, et al. Life course variations in the associations between FTO and MC4R gene variants and body size. Hum Mol Genet. Feb 2010;19(3):545–52.

    Article  PubMed  CAS  Google Scholar 

  41. Bouchard C. BMI, fat mass, abdominal adiposity and visceral fat: where is the “beef”?. Int J Obes (Lond). Oct 2007;31(10):1552–3.

    Article  CAS  Google Scholar 

  42. Flegal KM. Epidemiologic aspects of overweight and obesity in the United States. Physiol Behav. Dec 2005;86(5):599–602.

    Article  PubMed  CAS  Google Scholar 

  43. National Center for Health Statistics. 2008 – With Chartbook on Trends in the Health of Americans; Centers for Disease Control and Prevention, Health, United States, 2008.

    Google Scholar 

  44. DE Moor MH, Liu YJ, Boomsma DI, et al. Genome-wide association study of exercise behavior in dutch and American adults. Med Sci Sports Exerc. Oct 2009;41(10):1887–95.

    Article  PubMed  Google Scholar 

  45. Luan JA, Wong MY, Day NE, Wareham NJ. Sample size determination for studies of gene-environment interaction. Int J Epidemiol. Oct 2001;30(5):1035–40.

    Article  PubMed  CAS  Google Scholar 

  46. Wong MY, Day NE, Luan JA, Chan KP, Wareham NJ. The detection of gene-environment interaction for continuous traits: should we deal with measurement error by bigger studies or better measurement? Int J Epidemiol Feb 2003;32(1):51–7.

    Article  PubMed  CAS  Google Scholar 

  47. Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes. Jan 2008;57(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  48. Cauchi S, Stutzmann F, Cavalcanti-Proenca C, et al. Combined effects of MC4R and FTO common genetic variants on obesity in European general populations. J Mol Med. May 2009;87(5):537–46.

    Article  PubMed  CAS  Google Scholar 

  49. Vimaleswaran KS, Li S, Zhao JH, et al. Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am J Clin Nutr. Aug 2009;90(2):425–8.

    Article  PubMed  CAS  Google Scholar 

  50. Tuzun E, Sharp AJ, Bailey JA, et al. Fine-scale structural variation of the human genome. Nat Genet. Jul 2005;37(7):727–32.

    Article  PubMed  CAS  Google Scholar 

  51. Bochukova EG, Huang N, Keogh J, et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature. Feb 2010;463(7281):666–70.

    Article  PubMed  CAS  Google Scholar 

  52. Walters RG, Jacquemont S, Valsesia A, et al. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature. Feb 2010;463(7281):671–5.

    Article  PubMed  CAS  Google Scholar 

  53. Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science. Nov 1997;278(5343):1580–1.

    Article  PubMed  CAS  Google Scholar 

  54. Pritchard JK. Are rare variants responsible for susceptibility to complex diseases?. Am J Hum Genet Jul 2001;69(1):124–37.

    Article  PubMed  CAS  Google Scholar 

  55. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet. Sep 2001;17(9):502–10.

    Article  PubMed  CAS  Google Scholar 

  56. Via M, Gignoux C, Burchard EG. The 1,000 genomes project: new opportunities for research and social challenges. Genome Med. Jan 2010;2(1):3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth J.F. Loos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Loos, R.J., Kilpeläinen, T.O. (2011). Genome-Wide Association Studies and Human Population Obesity. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics