Ciliary Syndromes and Obesity

Chapter
Part of the Endocrine Updates book series (ENDO, volume 30)

Abstract

Understanding how genetic factors contribute to obesity is key to identifying potential therapeutic avenues of study, but to date the major genetic risk factors that predict an obese phenotype remain elusive. The study of simpler genetic causes of obesity, such as isolated phenotypes or in syndromic form, although of limited relevance to the genetic load of common disease, has nonetheless shown promise in identifying important adipogenic pathways. In this chapter, we discuss the links between obesity and a discrete syndromic set of disorders, the ciliopathies. Cilia are conserved sensory organelles that protrude from the apical membrane of cells and play vital developmental and physiological roles in all vertebrates. Within the disease module of the ciliopathies, Bardet–Biedl and Alström syndromes share obesity due to hyperphagia as a defining trait. Moreover, mouse genetic models and in vitro experiments suggest a positive role for cilia in leptin signaling in the hypothalamus and a negative role for cilia in the formation of adipocytes in peripheral tissues, offering two potential explanations on how ciliary lesions lead to obesity. We focus on recent advances in vivo and in vitro that further our understanding of how malfunctioning cilia contribute to the dysregulation of energy homeostasis on a molecular mechanistic level.

Keywords

Cilia Ciliopathies Intraflagellar transport Hedgehog Wnt Leptin Bardet–Biedl Alström 

References

  1. 1.
    Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. May 11 2007;316(5826):889–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. Jun 2007;39(6):724–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. Jul 2007;3(7):e115.PubMedCrossRefGoogle Scholar
  4. 4.
    Hinney A, Nguyen TT, Scherag A, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2(12):e1361.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu Y, Liu Z, Song Y, et al. Meta-analysis added power to identify variants in FTO associated with type 2 diabetes and obesity in the Asian population. Obesity (Silver Spring). Endocr J. 2010;57(4):293–301.Google Scholar
  6. 6.
    Karasawa S, Daimon M, Sasaki S, et al. Association of the common fat mass and obesity associated (FTO) gene polymorphism with obesity in a Japanese population. Endocrinol J. Jan 6 2010. Vol 57(4):293–301.Google Scholar
  7. 7.
    Pausova Z, Syme C, Abrahamowicz M, et al. A common variant of the FTO gene is associated with not only increased adiposity but also elevated blood pressure in French Canadians. Circ Cardiovasc Genet. Jun 2009;2(3):260–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Hunt SC, Stone S, Xin Y, et al. Association of the FTO gene with BMI. Obesity (Silver Spring). Apr 2008;16(4):902–4.CrossRefGoogle Scholar
  9. 9.
    Peeters A, Beckers S, Verrijken A, et al. Variants in the FTO gene are associated with common obesity in the Belgian population. Mol Genet Metab. Apr 2008;93(4):481–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Jacobsson JA, Danielsson P, Svensson V, et al. Major gender difference in association of FTO gene variant among severely obese children with obesity and obesity related phenotypes. Biochem Biophys Res Commun. Apr 11 2008;368(3):476–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Cha SW, Choi SM, Kim KS, et al. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. Obesity (Silver Spring). Sep 2008;16(9):2187–9.CrossRefGoogle Scholar
  12. 12.
    Olszewski PK, Fredriksson R, Olszewska AM, et al. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci. 2009;10:129.PubMedCrossRefGoogle Scholar
  13. 13.
    Jacobsson JA, Klovins J, Kapa I, et al. Novel genetic variant in FTO influences insulin levels and insulin resistance in severely obese children and adolescents. Int J Obes (Lond). Nov 2008;32(11):1730–5.CrossRefGoogle Scholar
  14. 14.
    Tanofsky-Kraff M, Han JC, Anandalingam K, et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr. Dec 2009;90(6):1483–8.PubMedCrossRefGoogle Scholar
  15. 15.
    den Hoed M, Westerterp-Plantenga MS, Bouwman FG, Mariman EC, Westerterp KR. Postprandial responses in hunger and satiety are associated with the rs9939609 single nucleotide polymorphism in FTO. Am J Clin Nutr. Nov 2009;90(5):1426–32.CrossRefGoogle Scholar
  16. 16.
    Sebert SP, Hyatt MA, Chan LL, et al. Influence of prenatal nutrition and obesity on tissue specific fat mass and obesity-associated (FTO) gene expression. Reproduction. Jan 2010;139(1):265–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Church C, Lee S, Bagg EA, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. Aug 2009;5(8):e1000599.PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity. Nature. Apr 16 2009;458(7240):894–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell. Apr 3 2009;137(1):32–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Sen Gupta P, Prodromou NV, Chapple JP. Can faulty antennae increase adiposity? The link between cilia proteins and obesity. J Endocrinol. Dec 2009;203(3):327–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Mok C, HÈon E, Zhen M. Ciliary dysfunction and obesity. Clin Genet. 2010;77(1):18–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 2006;7:125–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. Mar 2009;119(3):428–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Collin GB, Cyr E, Bronson R, et al. Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum Mol Genet. Aug 15 2005;14(16):2323–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Arsov T, Silva DG, O’Bryan MK, et al. Fat aussie – a new Alstrom syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol Endocrinol. Jul 2006;20(7):1610–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Li G, Vega R, Nelms K, et al. A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet. Jan 5 2007;3(1):e8.PubMedCrossRefGoogle Scholar
  27. 27.
    Rahmouni K, Fath MA, Seo S, et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest. Apr 2008;118(4):1458–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Davenport JR, Watts AJ, Roper VC, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol. Sep 18 2007;17(18):1586–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Davis RE, Swiderski RE, Rahmouni K, et al. A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci USA. Dec 4 2007;104(49):19422–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet. Apr 1 2009;18(7):1323–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Praetorius HA, Spring KR. A physiological view of the primary cilium. Annu Rev Physiol. 2005;67:515–29.PubMedCrossRefGoogle Scholar
  32. 32.
    Dutcher SK. Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet. Oct 1995;11(10):398–404.PubMedCrossRefGoogle Scholar
  33. 33.
    Dutcher SK. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii. Traffic. Jul 2003;4(7):443–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development. Apr 2005;132(8):1907–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. Dec 11 1998;95(6):829–37.PubMedCrossRefGoogle Scholar
  36. 36.
    Reese TS. Olfactory cilia in the frog. J Cell Biol. May 1 1965;25(2):209–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Baldari CT, Rosenbaum J. Intraflagellar transport: it’s not just for cilia anymore. Curr Opin Cell Biol. 2010 Feb;22(1):75–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA. Jun 15 1993;90(12):5519–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 2008;85:23–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Scholey JM. Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol. Jan 14 2008;180(1):23–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Kozminski KG, Beech PL, Rosenbaum JL. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol. Dec 1995;131(6 Pt 1):1517–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Brown JM, Marsala C, Kosoy R, Gaertig J. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena. Mol Biol Cell. Oct 1999;10(10):3081–96.PubMedGoogle Scholar
  43. 43.
    Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA. Apr 27 1999;96(9):5043–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Morris RL, Scholey JM. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J Cell Biol. Sep 8 1997;138(5):1009–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Sarpal R, Todi SV, Sivan-Loukianova E, et al. Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia, but not sperm tails. Curr Biol. Sep 30 2003;13(19):1687–96.PubMedCrossRefGoogle Scholar
  46. 46.
    Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol. May 17 1999;145(4):825–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Pfister KK, Fisher EM, Gibbons IR, et al. Cytoplasmic dynein nomenclature. J Cell Biol. Nov 7 2005;171(3):411–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Rompolas P, Pedersen LB, Patel-King RS, King SM. Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde intraflagellar transport motor. J Cell Sci. Oct 15 2007;120(Pt 20):3653–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Pazour GJ, Dickert BL, Witman GB. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol. Feb 8 1999;144(3):473–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Porter ME, Bower R, Knott JA, Byrd P, Dentler W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell. Mar 1999;10(3):693–712.PubMedGoogle Scholar
  51. 51.
    Signor D, Wedaman KP, Orozco JT, et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol. Nov 1 1999;147(3):519–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA. Aug 9 2005;102(32):11325–30.PubMedCrossRefGoogle Scholar
  53. 53.
    May SR, Ashique AM, Karlen M, et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol. Nov 15 2005;287(2):378–89.PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol. Nov 2002;3(11):813–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Christensen ST, Pedersen LB, Schneider L, Satir P. Sensory cilia and integration of signal transduction in human health and disease. Traffic. Feb 2007;8(2):97–109.PubMedCrossRefGoogle Scholar
  56. 56.
    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DYR, Reiter JF. Vertebrate Smoothened functions at the primary cilium. Nature. 2005;437(7061):1018–21.PubMedCrossRefGoogle Scholar
  57. 57.
    Dwyer ND, Adler CE, Crump JG, L’Etoile ND, Bargmann CI. Polarized dendritic transport and the AP-1 mu1 clathrin adaptor UNC-101 localize odorant receptors to olfactory cilia. Neuron. Aug 2 2001;31(2):277–87.PubMedCrossRefGoogle Scholar
  58. 58.
    Godsel LM, Engman DM. Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism. EMBO J. Apr 15 1999;18(8):2057–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Tull D, Vince JE, Callaghan JM, et al. SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell. Nov 2004;15(11):4775–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Quest AF, Harvey DJ, McIlhinney RA. Myristoylated and nonmyristoylated pools of sea urchin sperm flagellar creatine kinase exist side-by-side: myristoylation is necessary for efficient lipid association. Biochemistry. Jun 10 1997;36(23):6993–7002.PubMedCrossRefGoogle Scholar
  61. 61.
    Ramulu P, Nathans J. Cellular and subcellular localization, N-terminal acylation, and calcium binding of Caenorhabditis elegans protein phosphatase with EF-hands. J Biol Chem. Jul 6 2001;276(27):25127–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Schermer B, Hopker K, Omran H, et al. Phosphorylation by casein kinase 2 induces PACS-1 binding of nephrocystin and targeting to cilia. EMBO J. Dec 21 2005;24(24):4415–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Croce JC, McClay DR. Evolution of the Wnt pathways. Methods Mol Biol. 2008;469:3–18.PubMedCrossRefGoogle Scholar
  64. 64.
    Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell. Dec 2008;15(6):801–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. Nov 6 2003;426(6962):83–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science. Jul 20 2007;317(5836):372–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. Oct 2005;1(4):e53.PubMedCrossRefGoogle Scholar
  68. 68.
    Spinella-Jaegle S, Rawadi G, Kawai S, et al. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci. Jun 2001;114(Pt 11):2085–94.PubMedGoogle Scholar
  69. 69.
    Zehentner BK, Leser U, Burtscher H. BMP-2 and sonic hedgehog have contrary effects on adipocyte-like differentiation of C3H10T1/2 cells. DNA Cell Biol. May 2000;19(5):275–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Vierkotten J, Dildrop R, Peters T, Wang B, Ruther U. Ftm is a novel basal body protein of cilia involved in Shh signalling. Development. Jul 2007;134(14):2569–77.PubMedCrossRefGoogle Scholar
  71. 71.
    Khanna H, Davis EE, Murga-Zamalloa CA, et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet. Jun 2009;41(6):739–45.PubMedCrossRefGoogle Scholar
  72. 72.
    Stratigopoulos G, Padilla SL, LeDuc CA, et al. Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol. Apr 2008;294(4):R1185–R96.PubMedCrossRefGoogle Scholar
  73. 73.
    Shiba D, Yamaoka Y, Hagiwara H, Takamatsu T, Hamada H, Yokoyama T. Localization of Inv in a distinctive intraciliary compartment requires the C-terminal ninein-homolog-containing region. J Cell Sci. Jan 1 2009;122(Pt 1):44–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Mochizuki T, Saijoh Y, Tsuchiya K, et al. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature. Sep 10 1998;395(6698):177–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Morgan D, Turnpenny L, Goodship J, et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet. Oct 1998;20(2):149–56.PubMedCrossRefGoogle Scholar
  76. 76.
    Phillips CL, Miller KJ, Filson AJ, et al. Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol. Jul 2004;15(7):1744–55.PubMedCrossRefGoogle Scholar
  77. 77.
    Simons M, Gloy J, Ganner A, et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. May 2005;37(5):537–43.PubMedCrossRefGoogle Scholar
  78. 78.
    Corbit KC, Shyer AE, Dowdle WE, et al. Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol. Jan 2008;10(1):70–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Gerdes JM, Liu Y, Zaghloul NA, et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet. Nov 2007;39(11):1350–60.PubMedCrossRefGoogle Scholar
  80. 80.
    Ocbina PJ, Tuson M, Anderson KV. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS One. 2009;4(8):e6839.PubMedCrossRefGoogle Scholar
  81. 81.
    Huang P, Schier AF. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development. Sep 2009;136(18):3089–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet. Jul 2008;40(7):871–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science. Aug 11 2000;289(5481):950–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Longo KA, Wright WS, Kang S, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem. Aug 20 2004;279(34):35503–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Christodoulides C, Scarda A, Granzotto M, et al. WNT10B mutations in human obesity. Diabetologia. Apr 2006;49(4):678–84.PubMedCrossRefGoogle Scholar
  86. 86.
    Vertino AM, Taylor-Jones JM, Longo KA, et al. Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell. Apr 2005;16(4):2039–48.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. Dec 1 1994;372(6505):425–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Woods SC, D’Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab. Nov 2008;93 11 Suppl 1:S37–S50.PubMedCrossRefGoogle Scholar
  89. 89.
    Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. Apr 20 2007;129(2):251–62.PubMedCrossRefGoogle Scholar
  90. 90.
    Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. Jun 26 1997;387(6636):903–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. Oct 22 1998;395(6704):763–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. Oct 2002;110(8):1093–103.PubMedGoogle Scholar
  93. 93.
    Dahl HA. Fine structure of cilia in rat cerebral cortex. Z Zellforsch Mikrosk Anat. 1963;60:369–86.PubMedCrossRefGoogle Scholar
  94. 94.
    Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP. The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development. Jun 2000;127(11):2347–55.PubMedGoogle Scholar
  95. 95.
    Balthasar N, Coppari R, McMinn J, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. Jun 24 2004;42(6):983–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Dhillon H, Zigman JM, Ye C, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron. Jan 19 2006;49(2):191–203.PubMedCrossRefGoogle Scholar
  97. 97.
    Huo L, Grill HJ, Bjorbaek C. Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes. Mar 2006;55(3):567–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology. Jan 2002;143(1):239–46.PubMedCrossRefGoogle Scholar
  99. 99.
    Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. Sep 21 2006;51(6):801–10.PubMedCrossRefGoogle Scholar
  100. 100.
    Fulton S, Pissios P, Manchon RP, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron. Sep 2006;51(6):811–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Mykytyn K, Nishimura DY, Searby CC, et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet. Aug 2002;31(4):435–8.PubMedGoogle Scholar
  102. 102.
    Handel M, Schulz S, Stanarius A, et al. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience. Mar 1999;89(3):909–26.PubMedCrossRefGoogle Scholar
  103. 103.
    Hamon M, Doucet E, Lefevre K, et al. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology. Aug 1999;21 2 Suppl:68S–76S.PubMedGoogle Scholar
  104. 104.
    Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D. Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res. Jul 28 2000;872(1–2):271–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K. Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell. Apr 2008;19(4):1540–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci USA. Mar 18 2008;105(11):4242–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Bishop GA, Berbari NF, Lewis J, Mykytyn K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol. Dec 10 2007;505(5):562–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Nordman S, Abulaiti A, Hilding A, et al. Genetic variation of the adenylyl cyclase 3 (AC3) locus and its influence on type 2 diabetes and obesity susceptibility in Swedish men. Int J Obes (Lond). Mar 2008;32(3):407–12.CrossRefGoogle Scholar
  109. 109.
    Pissios P. Animals models of MCH function and what they can tell us about its role in energy balance. Peptides. Nov 2009;30(11):2040–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. Dec 17 1998;396(6712):670–4.PubMedCrossRefGoogle Scholar
  111. 111.
    Kokkotou E, Jeon JY, Wang X, et al. Mice with MCH ablation resist diet-induced obesity through strain-specific mechanisms. Am J Physiol Regul Integr Comp Physiol. Jul 2005;289(1):R117–R24.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang Z, Li V, Chan GC, et al. Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS One. 2009;4(9):e6979.PubMedCrossRefGoogle Scholar
  113. 113.
    Coleman DL, Eicher EM. Fat (fat) and tubby (tub): two autosomal recessive mutations causing obesity syndromes in the mouse. J Hered. Nov–Dec 1990;81(6):424–7.PubMedGoogle Scholar
  114. 114.
    Mak HY, Nelson LS, Basson M, Johnson CD, Ruvkun G. Polygenic control of Caenorhabditis elegans fat storage. Nat Genet. Mar 2006;38(3):363–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. Jun 1 2000;14(11):1293–307.PubMedGoogle Scholar
  116. 116.
    MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab. Jan–Feb 2002;13(1):5–11.PubMedCrossRefGoogle Scholar
  117. 117.
    Forti E, Aksanov O, Birk RZ. Temporal expression pattern of Bardet-Biedl syndrome genes in adipogenesis. Int J Biochem Cell Biol. 2007;39(5):1055–62.PubMedCrossRefGoogle Scholar
  118. 118.
    Marion V, Stoetzel C, Schlicht D, et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci USA. Feb 10 2009;106(6):1820–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Quinlan RJ, Tobin JL, Beales PL. Modeling ciliopathies: primary cilia in development and disease. Curr Top Dev Biol. 2008;84:249–310.PubMedCrossRefGoogle Scholar
  120. 120.
    Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. Jun 1999;36(6):437–46.PubMedGoogle Scholar
  121. 121.
    Green JS, Parfrey PS, Harnett JD, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med. Oct 12 1989;321(15):1002–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Klein D, Ammann F. The syndrome of Laurence-Moon-Bardet-Biedl and allied diseases in Switzerland. Clinical, genetic and epidemiological studies. J Neurol Sci. Nov–Dec 1969;9(3):479–513.PubMedCrossRefGoogle Scholar
  123. 123.
    Bell J. The Laurence-Moon syndrome. In: Penrose LS, editor. The treasury of human inheritance. London:Cambridge University Press; 1958. pp. 51–96.Google Scholar
  124. 124.
    Marshall JD, Beck S, Maffei P, Naggert JK. Alstrom syndrome. Eur J Hum Genet. Dec 2007;15(12):1193–202.PubMedCrossRefGoogle Scholar
  125. 125.
    Gherman A, Davis EE, Katsanis N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet. Sep 2006;38(9):961–2.PubMedCrossRefGoogle Scholar
  126. 126.
    Katsanis N. The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet. Apr 1 2004;13 Spec No 1:R65–R71.PubMedCrossRefGoogle Scholar
  127. 127.
    Kulaga HM, Leitch CC, Eichers ER, et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet. Sep 2004;36(9):994–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Beales PL, Warner AM, Hitman GA, Thakker R, Flinter FA. Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet. Feb 1997;34(2):92–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Farag TI, Teebi AS. Bardet-Biedl and Laurence-Moon syndromes in a mixed Arab population. Clin Genet. Feb 1988;33(2):78–82.PubMedCrossRefGoogle Scholar
  130. 130.
    Farag TI, Teebi AS. High incidence of Bardet-Biedl syndrome amongst the Bedouin. Clin Genet. 1989;36:463–4.PubMedCrossRefGoogle Scholar
  131. 131.
    Ansley SJ, Badano JL, Blacque OE, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. Oct 9 2003;425(6958):628–33.PubMedCrossRefGoogle Scholar
  132. 132.
    Li JB, Gerdes JM, Haycraft CJ, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell. May 14 2004;117(4):541–52.PubMedCrossRefGoogle Scholar
  133. 133.
    Fan Y, Esmail MA, Ansley SJ, et al. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet. Sep 2004;36(9):989–93.PubMedCrossRefGoogle Scholar
  134. 134.
    Kim JC, Badano JL, Sibold S, et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet. May 2004;36(5):462–70.PubMedCrossRefGoogle Scholar
  135. 135.
    Kim JC, Ou YY, Badano JL, et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci. Mar 1 2005;118(Pt 5):1007–20.PubMedCrossRefGoogle Scholar
  136. 136.
    Nachury MV, Loktev AV, Zhang Q, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. Jun 15 2007;129(6):1201–13.PubMedCrossRefGoogle Scholar
  137. 137.
    Loktev AV, Zhang Q, Beck JS, et al. A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev Cell. Dec 2008;15(6):854–65.PubMedCrossRefGoogle Scholar
  138. 138.
    Inglis PN, Boroevich KA, Leroux MR. Piecing together a ciliome. Trends Genet. Sep 2006;22(9):491–500.PubMedCrossRefGoogle Scholar
  139. 139.
    Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. Aug 2009;10(8):513–25.PubMedCrossRefGoogle Scholar
  140. 140.
    Lechtreck KF, Johnson EC, Sakai T, et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol. Dec 28 2009;187(7):1117–32.PubMedCrossRefGoogle Scholar
  141. 141.
    Shah AS, Farmen SL, Moninger TO, et al. Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. Proc Natl Acad Sci USA. Mar 4 2008;105(9):3380–5.PubMedCrossRefGoogle Scholar
  142. 142.
    Yen HJ, Tayeh MK, Mullins RF, Stone EM, Sheffield VC, Slusarski DC. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Hum Mol Genet. Mar 1 2006;15(5):667–77.PubMedCrossRefGoogle Scholar
  143. 143.
    Lee S, Walker CL, Karten B, et al. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Hum Mol Genet. Mar 1 2005;14(5):627–37.PubMedCrossRefGoogle Scholar
  144. 144.
    Chen C, Visootsak J, Dills S, Graham JM Jr. Prader-Willi syndrome: an update and review for the primary pediatrician. Clin Pediatr (Phila). Sep 2007;46(7):580–91.CrossRefGoogle Scholar
  145. 145.
    Alström CH, Hallgren B, Nilsson LB, Asander H. Retinal degeneration combined with obesity, diabetes mellitus and neurogeneous deafness: a specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet-Biedl syndrome: a clinical, endocrinological and genetic examination based on a large pedigree. Acta Psychiatr Neurol Scand Suppl. 1959;129:1–35.PubMedGoogle Scholar
  146. 146.
    Hearn T, Renforth GL, Spalluto C, et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet. May 2002;31(1):79–83.PubMedGoogle Scholar
  147. 147.
    Collin GB, Marshall JD, Ikeda A, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet. May 2002;31(1):74–8.PubMedGoogle Scholar
  148. 148.
    Marshall JD, Bronson RT, Collin GB, et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med. Mar 28 2005;165(6):675–83.PubMedCrossRefGoogle Scholar
  149. 149.
    Hearn T, Spalluto C, Phillips VJ, et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes. May 2005;54(5):1581–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. Dec 4 2003;426(6966):570–4.PubMedCrossRefGoogle Scholar
  151. 151.
    Eggenschwiler JT, Anderson KV. Cilia and developmental signaling. Annu Rev Cell Dev Biol. 2007;23:345–73.PubMedCrossRefGoogle Scholar
  152. 152.
    Feistel K, Blum M. Three types of cilia including a novel 9+4 axoneme on the notochordal plate of the rabbit embryo. Dev Dyn. Dec 2006;235(12):3348–58.PubMedCrossRefGoogle Scholar
  153. 153.
    Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet. Aug 2002;3(8):589–600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Cell BiologyCenter for Human Disease ModelingDurhamUSA

Personalised recommendations