Perinatal Exposure to Endocrine Disrupting Chemicals with Estrogenic Activity and the Development of Obesity

Part of the Endocrine Updates book series (ENDO, volume 30)


Environmental chemicals with estrogenic activity can disrupt programming of endocrine signaling pathways that are established during development and result in adverse effects, some of which may not be apparent until much later in life. Recent evidence implicates developmental exposure to environmental estrogens, with a growing list of adverse health consequences including an association with obesity and diabetes. These diseases are quickly becoming significant public health problems and are fast reaching epidemic proportions worldwide. This review summarizes experimental animal data which support an association of environmental estrogens such as diethylstilbestrol, bisphenol A, and phytoestrogens with the development of obesity. Potential mechanisms are discussed and future research needs are summarized.


Overweight Metabolic disease Diabetes Xenoestrogens Developmental exposure Endocrine disruptor Bisphenol A Phthalates Estrogens 


  1. 1.
    Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. May 2007;132(6):2087–102.PubMedCrossRefGoogle Scholar
  2. 2.
    Oken E, Gillman MW. Fetal origins of obesity. Obes Res. 2003;11:496–506.PubMedCrossRefGoogle Scholar
  3. 3.
    Caballero B. The global epidemic of obesity: an overview. Epidemiol Rev. 2007;29:1–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Cunningham E. Where can I find obesity statistics?. J Am Diet Assoc. Apr 2010;110(4):656.Google Scholar
  5. 5.
    Centers for Disease Control and Prevention. Report on overweight and obesity. 2008. Accessed April 28, 2010.
  6. 6.
    McAllister EJ, Dhurandhar NV, Keith SW, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. Nov 2009;49(10):868–913.PubMedCrossRefGoogle Scholar
  7. 7.
    Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA. Oct 9 2002;288(14):1728–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. Jan 20 2010;303(3):235–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Collins S. Overview of clinical perspectives and mechanisms of obesity. Birth Defects Res A Clin Mol Teratol. Jul 2005;73(7):470–1.PubMedCrossRefGoogle Scholar
  10. 10.
    Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. Jan 1 2003;289(1):76–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United States, 1991–1998. JAMA. Oct 27 1999;282(16):1519–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Bern B. The fragile fetus vol. XXI. Princeton, NJ: Princeton Scientific; 1992.Google Scholar
  13. 13.
    Heindel JJ. Role of exposure to environmental chemicals in the developmental basis of disease and dysfunction. Reprod Toxicol. Apr–May 2007;23(3):257–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Heindel JJ. Animal models for probing the developmental basis of disease and dysfunction paradigm. Basic Clin Pharmacol Toxicol. Feb 2008;102(2):76–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Heindel JJ, Levin E. Developmental origins and environmental influences–Introduction. NIEHS symposium. Birth Defects Res A Clin Mol Teratol. Jul 2005;73(7):469.PubMedCrossRefGoogle Scholar
  16. 16.
    Gluckman PD, Hanson MA. The developmental origins of the metabolic syndrome. Trends Endocrinol Metab. May–Jun 2004;15(4):183–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Colborn T, Dumanoski D, Myers JP. Our stolen future. New York, NY: Penguin Books; 1996.Google Scholar
  18. 18.
    NIH. DES Research Update, NIH Publication No. 00-4722. Bethesda, MD: NTH; 1999.Google Scholar
  19. 19.
    Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. Dec 2002;31(6):1235–9.PubMedCrossRefGoogle Scholar
  20. 20.
    vom Saal FS, Akingbemi BT, Belcher SM, et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. Aug–Sep 2007;24(2):131–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. Jun 3 2005;308(5727):1466–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online. Jan 2008;16(1):23–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Newbold RR, Padilla-Banks E, Jefferson WN. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology. Jun 2006;147 6 Suppl:S11–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Skinner MK, Anway MD. Epigenetic transgenerational actions of vinclozolin on the development of disease and cancer. Crit Rev Oncog. Aug 2007;13(1):75–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One. 2008;3(11):e3745.PubMedCrossRefGoogle Scholar
  26. 26.
    Tang WY, Newbold R, Mardilovich K, et al. Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology. Dec 2008;149(12):5922–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. Apr 2002;8(2):185–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Heindel JJ. Endocrine disruptors and the obesity epidemic. Toxicol Sci. Dec 2003;76(2):247–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ. Effects of endocrine disruptors on obesity. Int J Androl. Apr 2008;31(2):201–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN. Developmental exposure to estrogenic compounds and obesity. Birth Defects Res A Clin Mol Teratol. Jul 2005;73(7):478–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN. Perinatal exposure to environmental estrogens and the development of obesity. Mol Nutr Food Res. Jul 2007;51(7):912–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Newbold RR, Padilla-Banks E, Snyder RJ, Phillips TM, Jefferson WN. Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol. Apr–May 2007;23(3):290–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Grun F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. Jun 2006;147 6 Suppl:S50–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Grun F, Watanabe H, Zamanian Z, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. Sep 2006;20(9):2141–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Raun A, Preston R. History of diethylstilbestrol use in livestock. 2002.
  36. 36.
    Thigpen JE, Setchell KD, Ahlmark KB, et al. Phytoestrogen content of purified, open- and closed-formula laboratory animal diets. Lab Anim Sci. 1999;49(5):530–6.PubMedGoogle Scholar
  37. 37.
    Newbold RR. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens. Environ Health Perspect. 1995;103(7):83–7.PubMedGoogle Scholar
  38. 38.
    McLachlan JA, Newbold RR, Bullock BC. Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res. 1980;40:3988–99.PubMedGoogle Scholar
  39. 39.
    Newbold RR, Bullock BC, McLachlan JA. Uterine adenocarcinoma in mice following developmental treatment with estrogens: a model for hormonal carcinogenesis. Cancer Res. 1990;50(23):7677–81.PubMedGoogle Scholar
  40. 40.
    Newbold R. Lessons learned from perinatal exposure to diethylstilbestrol (DES). Toxicol Appl Pharmacol. 2004;199:142–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Newbold RR, McLachlan JA. Transplacental hormonal carcinogenesis: diethylstilbestrol as an example. In: Huff J, Boyd J, Barrett JC, editors. Cellular and molecular mechanisms of hormonal carcinogenesis: environmental influences. New York, NY: Wiley-Liss; 1996. pp. 131–47.Google Scholar
  42. 42.
    Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens and obesity. Mol Cell Endocrinol. May 25 2009;304(1-2):84–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Gluckman PD, Hanson MA, Pinal C. The developmental origins of adult disease. Matern Child Nutr. Jul 2005;1(3):130–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Gillum RF. The association of the ratio of waist to hip girth with blood pressure, serum cholesterol and serum uric acid in children and youths aged 6–17 years. J Chronic Dis. 1987;40(5):413–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Gesta S, Bluher M, Yamamoto Y, et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA. Apr 25 2006;103(17):6676–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Newbold RR, Jefferson WN, Grissom SF, Padilla-Banks E, Snyder RJ, Lobenhofer EK. Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life. Mol Carcinog. Sep 2007;46(9):783–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Nikaido Y, Yoshizawa K, Danbara N, et al. Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol. Aug–Sep 2004;18(6):803–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Zoeller RT, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology. Feb 2005;146(2):607–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Brotons JA, Olea-Serrano MF, Villalobos M, Olea N. Xenoestrogens released from lacquer coating in food cans. Environ Health Perspect. 1994;1994(103):608–12.Google Scholar
  50. 50.
    Biles JE, McNeal TP, Begley TH, Hollifield HC. Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food simulating liquids. J Agric Food Chem. 1997;45:3541–4.CrossRefGoogle Scholar
  51. 51.
    Olea N, Pulgar R, Perez P, et al. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. Mar 1996;104(3):298–305.PubMedCrossRefGoogle Scholar
  52. 52.
    Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. Jan 2008;116(1):39–44.PubMedCrossRefGoogle Scholar
  53. 53.
    Takeuchi T, Tsutsumi O. Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun. Feb 15 2002;291(1):76–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Ye X, Kuklenyik Z, Needham LL, Calafat AM. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. Feb 2 2006;831(1–2):110–5.PubMedGoogle Scholar
  55. 55.
    Padmanabhan V, Siefert K, Ransom S, et al. Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol. Apr 2008;28(4):258–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Schonfelder G, Flick B, Mayr E, Talsness C, Paul M, Chahoud I. In utero exposure to low doses of bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia. Mar–Apr 2002;4(2):98–102.PubMedCrossRefGoogle Scholar
  57. 57.
    WHO. TetrabromobisphenolA and derivatives:environmental health criteria no. 172. Geneva: World Health Organization; 1995.Google Scholar
  58. 58.
    European Union Updated European Risk Assessment Report 4,4’-Isopropylidenediphenol (Bisphenol A). Environment Addendum of February 2008 (to be read in conjunction withEU RAR of BPA published in 2003). add 325.pdf; 2008. Accessed April 28, 2010.Google Scholar
  59. 59.
    Thomsen C, Lundanes E, Becher G. Brominated flame retardants in archived serum samples from Norway: a study on temporal trends and the role of age. Environ Sci Technol. Apr 1 2002;36(7):1414–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Wetherill YB, Akingbemi BT, Kanno J, et al. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol. Aug–Sep 2007;24(2):178–98.PubMedCrossRefGoogle Scholar
  61. 61.
    NTP. CEHR Brief on bisphenol A. National toxicology program. Research Triangle Park, NC: NTP. 2008.Google Scholar
  62. 62.
    Richter CA, Birnbaum LS, Farabollini F, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. Aug–Sep 2007;24(2):199–224.PubMedCrossRefGoogle Scholar
  63. 63.
    Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature. Oct 21 1999;401(6755):763–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Ashby J, Tinwell H, Haseman J. Lack of effects for low dose levels of bisphenol A and diethylstilbestrol on the prostate gland of CF1 mice exposed in utero. Regul Toxicol Pharmacol. Oct 1999;30(2 Pt 1):156–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Takai Y, Tsutsumi O, Ikezuki Y, et al. Preimplantation exposure to bisphenol A advances postnatal development. Reprod Toxicol. Jan–Feb 2001;15(1):71–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Honma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi T. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol. Mar–Apr 2002;16(2):117–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Nikaido Y, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, Tsubura A. Effects of prepubertal exposure to xenoestrogen on development of estrogen target organs in female CD-1 mice. In Vivo. May–Jun 2005;19(3):487–94.PubMedGoogle Scholar
  68. 68.
    Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. Jul 2001;109(7):675–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Somm E, Schwitzgebel VM, Toulotte A, et al. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect. Oct 2009;117(10):1549–55.PubMedGoogle Scholar
  70. 70.
    Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ. Perinatal Exposure to Bisphenol-A and the Development of Metabolic Syndrome in CD-1 Mice. Endocrinology. June 2010;151(6):2603–12. Mar 29 2010. [e published].PubMedCrossRefGoogle Scholar
  71. 71.
    Sakurai K, Kawazuma M, Adachi T, et al. Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol. Jan 2004;141(2):209–14.PubMedCrossRefGoogle Scholar
  72. 72.
    Masuno H, Kidani T, Sekiya K, et al. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res. May 2002;43(5):676–84.PubMedGoogle Scholar
  73. 73.
    Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci. Apr 2005;84(2):319–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Alonso-Magdalena P, Laribi O, Ropero AB, et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect. Aug 2005;113(8):969–77.PubMedCrossRefGoogle Scholar
  75. 75.
    Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect. Jan 2006;114(1):106–12.PubMedCrossRefGoogle Scholar
  76. 76.
    Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol Cell Endocrinol. May 25 2009;304(1–2):49–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. Dec 2008;116(12):1642–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Ropero AB, Alonso-Magdalena P, Garcia-Garcia E, Ripoll C, Fuentes E, Nadal A. Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int J Androl. Apr 2008;31(2):194–200.PubMedCrossRefGoogle Scholar
  79. 79.
    Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J. Apr 2004;51(2):165–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Penza M, Montani C, Romani A, et al. Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology. Dec 2006;147(12):5740–51.PubMedCrossRefGoogle Scholar
  81. 81.
    Stettler N, Stallings VA, Troxel AB, et al. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation. Apr 19 2005;111(15):1897–903.PubMedCrossRefGoogle Scholar
  82. 82.
    Rozman KK, Bhatia J, Calafat AM, et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of soy formula. Birth Defects Res B Dev Reprod Toxicol. Aug 2006;77(4):280–397.PubMedCrossRefGoogle Scholar
  83. 83.
    Shinomiya N, Shinomiya M. Dichlorodiphenyltrichloroethane suppresses neurite outgrowth and induces apoptosis in PC12 pheochromocytoma cells. Toxicol Lett. Feb 3 2003;137(3):175–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH)Research Triangle ParkUSA

Personalised recommendations