The Assay of Endogenous and Exogenous Anabolic Androgenic Steroids

  • Maria Kristina Parr
  • Ulrich Flenker
  • Wilhelm Schänzer
Chapter
Part of the Endocrine Updates book series (ENDO, volume 29)

Abstract

According to the regulations of the World Anti-Doping Agency (WADA) [1], anabolic androgenic steroids are classified as prohibited substances in sports. They are covered in the section S1.Anabolic Agents 1. Anabolic Androgenic Steroids (AAS). This section is further subdivided into a.Exogenous AAS and b.Endogenous AAS. AAS represent the class of substances most frequently detected in human sports doping control analyses for many years [2]. The analysis for AAS in doping control is generally performed using urine specimen as matrix.

Keywords

Corn Testosterone Androgenic Hormone Sorghum DHEA 

References

  1. 1.
    World Anti-Doping Agency. The 2009 Prohibited List. Vol. 2009: World Anti-Doping Agency, 2008.Google Scholar
  2. 2.
    World Anti-Doping Agency. Adverse Analytical Findings Reported by Accredited Laboratories. Vol. 2008.Google Scholar
  3. 3.
    Schänzer W, Geyer H, Donike M. Metabolism of metandienone in man – identification and synthesis of conjugated excreted urinary metabolites, determination of excretion rates and gas-chromatographic mass-spectrometric identification of bis-hydroxylated metabolites. Journal of Steroid Biochemistry and Molecular Biology. 1991; 38:441–464.CrossRefPubMedGoogle Scholar
  4. 4.
    Schänzer W, Opfermann G, Donike M. Metabolism of stanozolol – identification and synthesis of urinary metabolites. Journal of Steroid Biochemistry and Molecular Biology. 1990; 36:153–174.Google Scholar
  5. 5.
    Schänzer W, Horning S, Donike M. Metabolism of anabolic-steroids in humans - synthesis of 6-beta-hydroxy metabolites of 4-chloro-1,2-dehydro-17-alpha-methyltestosterone, fluoxymesterone, and metandienone. Steroids. 1995; 60:353–366.CrossRefPubMedGoogle Scholar
  6. 6.
    Schänzer W, Horning S, Opfermann G, Donike M. Gas chromatography mass spectrometry identification of long-term excreted metabolites of the anabolic steroid 4-chloro-1,2-dehydro-17 alpha-methyltestosterone in humans. Journal of Steroid Biochemistry and Molecular Biology. 1996; 57:363–376.CrossRefPubMedGoogle Scholar
  7. 7.
    Parr MK, Geyer H, Gütschow M, et al. New Steroids on the “Supplement” Market. Köln: 26th Cologne Workshop on Doping Analysis, 2008.Google Scholar
  8. 8.
    Sobolevsky T, Virus E, Semenistaya E, Kachala V, Kachala I, Rodchenkov G. Orastan-A: Structural Elucidation and Detection in Urine. Köln: 26th Cologne Workshop on Doping Analysis, 2008.Google Scholar
  9. 9.
    Rodchenkov G, Sobolevsky T, Sizoi V. New designer anabolic steroids from internet. In: Schänzer W, Geyer H, Gotzmann A, Mareck U, eds. Recent Advances in Doping Analysis (14). Köln: Sport und Buch Strauß, 2006:141–150.Google Scholar
  10. 10.
    Kazlauskas R. Micellaneous projects in sports drug testing at the National Measurement Institute, Australia, 2005. In: Schänzer W, Geyer H, Gotzmann A, Mareck U, eds. Recent Advances in Doping Analysis (14). Köln: Sport und Buch Strauß, 2006:129–140.Google Scholar
  11. 11.
    Schänzer W, Opfermann G, Donike M. 17-Epimerization of 17-alpha-methyl anabolic-steroids in humans – metabolism and synthesis of 17-alpha-hydroxy-17-beta-methyl steroids. Steroids. 1992; 57:537–550.CrossRefPubMedGoogle Scholar
  12. 12.
    Kleemann A, Roth HJ. Arzneistoffgewinnung: Naturstoffe und Derivate. Stuttgart: Thieme, 1983.Google Scholar
  13. 13.
    Schänzer W. Metabolism of anabolic androgenic steroids. Clinical Chemistry. 1996; 42:1001–1020.PubMedGoogle Scholar
  14. 14.
    Becchi M, Aguilera R, Farizon Y, Flament M, Casabianca H, James P. Gas chromatography/combustion/isotope-ratio mass spectrometry analysis of urinary steroids to detect misuse of testosterone in sport. Rapid Communications in Mass Spectrometry. 1994; 8:304–308.CrossRefPubMedGoogle Scholar
  15. 15.
    Aguilera R, Hatton C, Catlin D. Detection of epitestosterone doping by isotope ratio mass spectrometry. Clinical Chemistry. 2002; 48:629–636.PubMedGoogle Scholar
  16. 16.
    Aguilera R, Becchi M, Casabianca H, et al. Improved method of detection of testosterone abuse by gas chromatography/combustion/isotope ratio mass spectrometry analysis of urinary steroids. Journal of Mass Spectrometry. 1996; 31:169–176.CrossRefPubMedGoogle Scholar
  17. 17.
    Aguilera R, Becchi M, Grenot C, Casabianca H, Hatton C. Detection of testosterone misuse: comparison of two chromatographic sample preparation methods for gas chromatographic–combustion/isotope ratio mass spectrometric analysis. Journal of Chromatography B. 1996; 687:43–53.CrossRefGoogle Scholar
  18. 18.
    Aguilera R, Chapman T, Catlin D. A rapid screening assay for measuring urinary androsterone and etiocholanolone d13C values by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry. 2000; 14:2294–2299.CrossRefPubMedGoogle Scholar
  19. 19.
    Aguilera R, Chapman T, Starcevic B, Hatton C, Catlin D. Performance characteristics of a carbon isotope ratio method for detecting doping with testosterone based on urine diols: controls and athletes with elevated testosterone/epitestosterone ratios. Clinical Chemistry. 2001; 47:292–300.PubMedGoogle Scholar
  20. 20.
    Vogel J. Fractionation of the Carbon Isotopes During Photosynthesis. Berlin: Springer-Verlag, 1980.Google Scholar
  21. 21.
    O’Leary M. Carbon isotope fractionation in plants. Phytochemistry. 1981; 20:553–567.CrossRefGoogle Scholar
  22. 22.
    Donike M. N-methyl-N-trimethylsilyl-trifluoroacetamide a new silylating agent from series of silylated amides. Journal of Chromatography. 1969; 42:103–104.CrossRefGoogle Scholar
  23. 23.
    Schänzer W. Analytik von Dopingsubstanzen – Derivatisierung. Vol. 2009: Institut für Biochemie, Deutsche Sporthochschule Köln, 2001.Google Scholar
  24. 24.
    Donike M, Zimmermann J. Preparation of trimethylsilyl, triethylsilyl and tert-butyldimethylsilyl enol ethers from ketosteroids for investigations by gas-chromatography and mass-spectrometry. Journal of Chromatography. 1980; 202:483–486.CrossRefGoogle Scholar
  25. 25.
    Geyer H, Schänzer W, Mareck-Engelke U, Nolteernsting E, Opfermann G. Screening procedure for anabolic steroids – control of hydrolysis with deuterated androsterone glucuronide and ­studies with direct hydrolysis. In: Mareck-Engelke U, ed. Recent Advances in Doping Analysis (5). Köln: Sport und Buch Strauss, 1998:99–102.Google Scholar
  26. 26.
    Flenker U, Horning S, Nolteernsting E, Geyer H, Schänzer W. Measurement of 13C/12C-ratios to confirm misuse of endogenous steroids. In: Schänzer W, Geyer H, Gotzmann A, Mareck-Engelke U, eds. Recent Advances in Doping Analysis (6). Köln: Sport und Buch Strauss, 1999:243–256.Google Scholar
  27. 27.
    Flenker U, Güntner U, Schänzer W. Delta C-13-values of endogenous urinary steroids. Steroids. 2008; 73:408–416.CrossRefPubMedGoogle Scholar
  28. 28.
    Piper T, Mareck U, Geyer H, et al. Determination of C-13/C-12 ratios of endogenous urinary steroids: method validation, reference population and application to doping control purposes. Rapid Communications in Mass Spectrometry. 2008; 22:2161–2175.CrossRefPubMedGoogle Scholar
  29. 29.
    Docherty G, Jones V, Evershed R. Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry d13C analysis of small polyfunctional compounds. Rapid Communications in Mass Spectrometry. 2001; 15:730–738.CrossRefPubMedGoogle Scholar
  30. 30.
    World Anti-Doping Agency. WADA Technical Document TD2009MRPL. Vol. 2009: World Anti-Doping Agency, 2008.Google Scholar
  31. 31.
    World Anti-Doping Agency. WADA Technical Document TD2003IDCR. Vol. 2009: World Anti-Doping Agency, 2004.Google Scholar
  32. 32.
    Schänzer W, Donike M. Metabolism of anabolic-steroids in man – synthesis and use of reference substances for identification of anabolic-steroid metabolites. Analytica Chimica Acta. 1993; 275:23–48.CrossRefGoogle Scholar
  33. 33.
    Geyer H, Parr MK, Koehler K, Mareck U, Schanzer W, Thevis M. Nutritional supplements cross-contaminated and faked with doping substances. Journal of Mass Spectrometry. 2008; 43:892–902.CrossRefPubMedGoogle Scholar
  34. 34.
    US Drug Enforcement Administration. Anabolic Steroids Control Act. Vol. 2005: US Drug Enforcement Administration, 2004.Google Scholar
  35. 35.
    Parr MK, Kazlauskas R, Schlorer N, et al. 6 alpha-Methylandrostenedione: gas chromatographic mass spectrometric detection in doping control. Rapid Communications in Mass Spectrometry. 2008; 22:321–329.CrossRefPubMedGoogle Scholar
  36. 36.
    Parr MK, Fußhöller G, Schlörer N, et al. Metabolism of androsta-1,4,6-triene-3,17-dione and detection by gas chromatography/mass spectrometry in doping control. Rapid Communications in Mass Spectrometry. 2009; 23:207–218.CrossRefPubMedGoogle Scholar
  37. 37.
    Thevis M, Schanzer W. Mass spectrometry in sports drug testing: Structure characterization and analytical assays. Mass Spectrometry Reviews. 2007; 26:79–107.CrossRefPubMedGoogle Scholar
  38. 38.
    Thevis M, Geyer H, Mareck U, Schänzer W. Screening for unknown synthetic steroids in human urine by liquid chromatography–tandem mass spectrometry. Journal of Mass Spectrometry. 2005; 40:955–962.CrossRefPubMedGoogle Scholar
  39. 39.
    Pozo OJ, Deventer K, Eenoo PV, Delbeke FT. Efficient approach for the comprehensive detection of unknown anabolic steroids and metabolites in human urine by liquid chromatography–electrospray–tandem mass spectrometry. Analytical Chemistry. 2008; 80:1709–1720.CrossRefPubMedGoogle Scholar
  40. 40.
    World Anti-Doping Agency. WADA Technical Document TD2004EAAS. Vol. 2007: World Anti-Doping Agency, 2004.Google Scholar
  41. 41.
    Donike M, Barwald KR, Klostermann K, Schanzer W, Zimmermann J. The detection of exogenous testosterone. International Journal of Sports Medicine. 1983; 4:68.Google Scholar
  42. 42.
    Geyer H. Die gas-chromatographisch/massenspektrometrische Bestimmung von Steroidprofilen im Urin von Athleten, Institute of Biochemistry. Köln: German Sport University, 1986.Google Scholar
  43. 43.
    Mareck-Engelke U, Geyer H, Donike M. Stability of steroid profiles. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S, eds. 10th Cologne Workshop on Dope Analysis. Köln: Sport und Buch Strauss, 1992:87–89.Google Scholar
  44. 44.
    Mareck-Engelke U, Geyer H, Donike M. Stability of steroid profiles (2): excretion rates from morning urines. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S, eds. Recent Advances in Doping Analysis. Köln: Sport und Buch Strauss, 1993:85.Google Scholar
  45. 45.
    Mareck-Engelke U, Geyer H, Donike M. Stability of steroid profiles (4): the circadian rhythm of urinary ratios and excretion rates of endogenous steroids in female and its menstrual dependency. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, eds. Recent Advances in Doping Analysis (2). Köln: Sport und Buch Strauss, 1994:135.Google Scholar
  46. 46.
    Mareck-Engelke U, Geyer H, Donike M. Stability of steroid profiles (3): the circadian rhythm of urinary ratios and excretion rates of endogenous steroids in male. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, eds. Recent Advances in Doping Analysis (2). Köln: Sport und Buch Strauss, 1994:121.Google Scholar
  47. 47.
    Mareck-Engelke U, Geyer H, Donike M. Stability of steroid profiles (5): the annual rhythm of urinary ratios and excretion rates of endogenous steroids in female and its menstrual dependency. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, eds. Recent Advances in Doping Analysis (3). Köln: Sport und Buch Strauss, 1995:177.Google Scholar
  48. 48.
    Nitschke R. Steroidprofile und Ver¨anderungen biochemischer Parameter bei Hochleistungsradrennfahreren während zwei Rundfahrten, Institute of Biochemistry. Köln: German Sport University, 1996.Google Scholar
  49. 49.
    Dehennin L, Matsumoto AM. Long-term administration of testosterone enanthate to normal men: alterations of the urinary profile of androgen metabolites potentially useful for detection of testosterone misuse in sport. Journal of Steroid Biochemistry and Molecular Biology. 1993; 44:179–189.CrossRefPubMedGoogle Scholar
  50. 50.
    Donike M, Ueki M, Kuroda Y, et al. Detection of dihydrotestosterone (DHT) doping: alterations in the steroid profile and reference ranges for DHT and its 5alpha-metabolites. Journal of Sports Medicine and Physical Fitness. 1995; 35:235–250.PubMedGoogle Scholar
  51. 51.
    Thevis M, Geyer H, Mareck U, Flenker U, Schanzer W. Doping-control analysis of the 5 alpha-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolite. Therapeutic Drug Monitoring. 2007; 29:236–247.CrossRefPubMedGoogle Scholar
  52. 52.
    Bowers LD. Oral dehydroepiandrosterone supplementation can increase the testosterone/epitestosterone ratio. Clinical Chemistry. 1999; 45:295–297.PubMedGoogle Scholar
  53. 53.
    Uralets VP, Gillette PA. Over-the-counter anabolic steroids 3-androsten-3,17-dione; 4-androsten-3 beta,17 beta-diol; and 19-nor-4-androsten-3,17-dione: excretion studies in men. Journal of Analytical Toxicology. 1999; 23:357–366.PubMedGoogle Scholar
  54. 54.
    Dehennin L, Ferry M, Lafarge P, Peres G, Lafarge JP. Oral administration of dehydroepiandrosterone to healthy men: alteration of the urinary androgen profile and consequences for the detection of abuse in sport by gas chromatography–mass spectrometry. Steroids. 1998; 63:80–87.CrossRefPubMedGoogle Scholar
  55. 55.
    Geyer H, Schänzer W, Mareck-Engelke U, Donike M. Factors influencing the steroid profile. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, eds. Recent Advances in Doping Analysis (3). Köln: Sport und Buch Strauss, 1995:95–113.Google Scholar
  56. 56.
    De Laeter J, Kurz M. Alfred Nier and the sector field mass spectrometer. Journal of Mass Spectrometry. 2006; 41:847–854.CrossRefPubMedGoogle Scholar
  57. 57.
    Habfast K. Advanced isotope ratio mass spectrometry I: magnetic isotope ratio mass spectrometers. In: Platzner I, ed. Modern Isotope Ratio Mass Spectrometry, Vol. 145. Chemical Analysis. Chichester: John Wiley & Sons Ltd, 1997:11–82.Google Scholar
  58. 58.
    Barrie A, Bricout J, Koziet J. Gas chromatography-stable isotope ratio analysis at natural abundance levels. Biomedical Mass Spectrometry. 1984; 11:583–588.CrossRefGoogle Scholar
  59. 59.
    Brand W. High precision isotope ratio monitoring techniques in mass spectrometry. Journal of Mass Spectrometry. 1996; 31:225–235.CrossRefPubMedGoogle Scholar
  60. 60.
    Flenker U, Hebestreit M, Piper T, Hülsemann F, Schänzer W. Improved performance and maintenance in gas chromatography/isotope ratio mass spectrometry by precolumn solvent removal. Analytical Chemistry. 2007; 79:4162–4168.CrossRefPubMedGoogle Scholar
  61. 61.
    Sacks G, Zhang Y, Brenna J. Fast gas chromatography combustion isotope ratio mass spectrometry. Analytical Chemistry. 2007; 79:6348–6358.CrossRefPubMedGoogle Scholar
  62. 62.
    Tobias H, Sacks G, Zhang Y, Brenna J. Comprehensive two-dimensional gas chromatography combustion isotope ratio mass spectrometry. Analytical Chemistry. 2008; 80:8613–8621.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria Kristina Parr
    • 1
  • Ulrich Flenker
  • Wilhelm Schänzer
  1. 1.Institute of BiochemistryGerman Sport University CologneCologneGermany

Personalised recommendations