Skip to main content

Amino Acids and Nonhormonal Compounds for Doping in Athletes

  • Chapter
  • First Online:
  • 991 Accesses

Part of the book series: Endocrine Updates ((ENDO,volume 29))

Abstract

Competitive sport on high levels is far from being healthy. Strenuous physical activity on the way to the medal is far from being physiologic. In fact, we have now ways and means to evaluate the immediate muscle damage and the accumulation of metabolic products causing pain and other physical phenomena by which the body notifies us about this suffering. It is important to find ways and means to decrease body discomfort or to reduce the tissue damage, and to avoid exercise stress-related health risks. On the other hand, from the medical point of view we have to provide athletes with adequate nutrients and energy for the maintenance of homeostasis. Doing this, the question is, what is the border between doping and preventive medicine? Energetic and nutritional needs of athletes are higher than those of sedentary people. Where is the border between adequate nutritional supplementation aimed at maintenance of appropriate body composition, energy stores, and body mass on one hand and nutritional overload for the improvement of athletic performance in elite athletes on the other hand? Very often, there are possible links between “supplements or ergogenic compounds” and the endocrine-metabolic system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almquist J, Valovich McLeod TC, Cavanna A, Jenkinson D, Lincoln AE, Loud K, et al. Summary statement: appropriate medical care for the secondary school-aged athlete. J Athl Train. 2008;43:416–427.

    Article  PubMed  Google Scholar 

  2. Maughan RJ. Nutritional ergogenic aids and exercise performance. Nutr Res Rev. 1999;12:255–280.

    Article  CAS  PubMed  Google Scholar 

  3. Maughan RJ, King DS, Trevor L. Dietary supplements. J Sports Sci. 2004;22:95–113.

    Article  PubMed  Google Scholar 

  4. Volpe SL. Micronutrient requirements for athletes. Clin Sports Med. 2007;26:119–130.

    Article  PubMed  Google Scholar 

  5. Striegel H, Simon P, Wurster C, et al. The use of nutritional supplements among master ­athletes. Int J Sports Med. 2006;27:236–241.

    Article  CAS  PubMed  Google Scholar 

  6. Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release in men after administration of amino acids. Curr Med Res Opin. 1981;7:475–481.

    CAS  PubMed  Google Scholar 

  7. Alba RJ, Albrecht Muller O. Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab. 1988;67:1186–1189.

    Article  Google Scholar 

  8. Williams MH, Leutholtz BC. Nutritional ergogenic aids. In: Maughan R, ed. Nutrition in sport. Oxford: Blackwell Science; 2000:356–366.

    Google Scholar 

  9. Phillips SM. Dietary protein for athletes: from requirements to metabolic advantage. Appl Physiol Nutr Metab. 2006;31:647–654.

    Article  CAS  PubMed  Google Scholar 

  10. Boisseau N, Vermorel M, Rance M, Duché P, Patureau-Mirand P. Protein requirements in male adolescent soccer players. Eur J Appl Physiol. 2007;100:27–33.

    Article  CAS  PubMed  Google Scholar 

  11. Nemet D, Eliakim A. Pediatric sport nutrition – an update. Curr Opin Clin Nutr Metab Care. 2009;12:304–309.

    Article  CAS  PubMed  Google Scholar 

  12. Carli G, Bonifazi M, Lodi L. Changes in the exercise induced hormone response to branched chain amino acids administration. Eur J Appl Physiol. 1992;64:272–277.

    Article  CAS  Google Scholar 

  13. Hicks TP, Conti F. Amino acids as the source of considerable excitation in cerebral cortex. Can J Physiol Pharmacol. 1996;74:341–361.

    Article  CAS  PubMed  Google Scholar 

  14. Blomstrand E, Celsing F, Newsholme EA. Changes in plasma concentrations of aromatic and branched-chain amino acid during sustained exercise in men and their possible role in fatigue. Acta Physiol Scand. 1988;133:115–121.

    Article  CAS  PubMed  Google Scholar 

  15. Carli G, Bonifazi M, Lodi L, et al. Changes in the exercise induced hormone response to branched chain amino acids administration. Eur J Appl Physiol. 1992;64:272–277.

    Article  CAS  Google Scholar 

  16. Di Luigi L, Pigozzi F, Casini A, et al. Effects of prolonged amino acid supplementations on hormonal secretion in male athletes. Med Sport. 1994;47:529–539.

    Google Scholar 

  17. Evain-Brion D, Donnadieu M, Roger M, et al. Simultaneous study of somatotrophic and corticotrophic pituitary secretion during ornithine infusion test. Clin Endocrinol. 1982;17:119–122.

    Article  CAS  Google Scholar 

  18. Tegelman R, Johansson C, Hemmingsson P, Eklöf R, Carlström K, Pousette A. Endogenous anabolic and catabolic steroids hormones in male and female athletes during off season. Int J Sports Med. 1990;11:103–106.

    Article  CAS  PubMed  Google Scholar 

  19. Dolinska M, Albrecht J. Glutamate uptake is inhibited by L-arginine in mitochondria isolated from rat cerebrum. Neuroreport. 1997;8:2365–2368.

    Article  CAS  PubMed  Google Scholar 

  20. Brass EP. Carnitine and sports medicine: use or abuse? Ann N Y Acad Sci. 2004;1033:67–78.

    Article  CAS  PubMed  Google Scholar 

  21. Broad EM, Maughan RJ, Galloway SD. Carbohydrate, protein, and fat metabolism during exercise after oral carnitine supplementation in humans. J Sport Nutr Exerc Metab. 2008;18:567–584.

    CAS  Google Scholar 

  22. Smith WA, Fry AC, Tschume LC, Bloomer RJ. Effect of glycine propionyl-L-carnitine on aerobic and anaerobic exercise performance. Int J Sport Nutr Exerc Metab. 2008;18:19–36.

    CAS  PubMed  Google Scholar 

  23. Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol. 1978;45(6):927–932.

    CAS  PubMed  Google Scholar 

  24. Jackson MJ. Exercise and oxygen radical production by muscle. In: Sen CK, Packer L, Hanninen O, eds. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier Science 2000:57–68.

    Chapter  Google Scholar 

  25. Halliwell B. Oxygen radicals: a commonsense look at their nature and medical importance. Med Biol. 1984;62(2):71–77.

    CAS  PubMed  Google Scholar 

  26. Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc. 2001;33(3):371–376.

    Article  CAS  PubMed  Google Scholar 

  27. Goldhaber JI, Qayyum MS. Oxygen free radicals and excitation–contraction coupling. Antioxid Redox Signal. 2000;2(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  28. Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 1994;102(Suppl 10):5–12.

    Article  CAS  PubMed  Google Scholar 

  29. Aruoma OI. Free radicals and antioxidant strategies in sport. J Nutr Biochem. 1994;5:370–381.

    Article  CAS  Google Scholar 

  30. Ji LL. Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med. 1995;18:1079–1086.

    Article  CAS  PubMed  Google Scholar 

  31. Tiidus PM, Houston ME. Vitamin E status and response to exercise training. Sports Med. 1995;20:12–23.

    Article  CAS  PubMed  Google Scholar 

  32. Clarkson PM. Antioxidants and physical performance. Clin Rev Food Sci Nutr. 1995;35:131–141.

    Article  CAS  Google Scholar 

  33. Maxwell SRJ. Prospects for the use of antioxidant therapies. Drugs. 1995;49:345–361.

    Article  CAS  PubMed  Google Scholar 

  34. Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol. 1995;675:79–86.

    Google Scholar 

  35. Dekkers JC, van Doornen LJP, Kemper HCG. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med. 1996;21:213–238.

    Article  CAS  PubMed  Google Scholar 

  36. Packer L. Oxidants, antioxidant nutrients and the athlete. J Sports Sci. 1997;15:353–363.

    Article  CAS  PubMed  Google Scholar 

  37. Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectroscopic detection of oxygen-centered radicals in human serum following exhaustive exercise. Eur J Appl Physiol. 1998;77:498–502.

    Article  CAS  Google Scholar 

  38. Kanter M. Free radicals, exercise and antioxidant supplementation. Proc Nutr Soc. 1998;57:9–13.

    Article  CAS  PubMed  Google Scholar 

  39. Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003;189(1–2):41–54.

    Article  CAS  PubMed  Google Scholar 

  40. Watson TA, Callister R, Taylor RD, Sibbritt DW, MacDonald-Wicks LK, Garg ML. Antioxidant restriction and oxidative stress in short-duration exhaustive exercise. Med Sci Sports Exerc. 2005;37(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  41. Knez WL, Coombes JS, Jenkins DG. Ultra-endurance exercise and oxidative damage: implications for cardiovascular health. Sports Med. 2006;36(5):429–441.

    Article  PubMed  Google Scholar 

  42. Sauberlich HE. Ascorbic acid. In: Brown ML, ed. Present knowledge in nutrition. Washington, DC: International Life Sciences Institute; 1990:132–141.

    Google Scholar 

  43. Olson JA, Vitamin A. In: Brown ML, ed. Present knowledge in nutrition. Washington, DC: International Life Sciences Institute; 1990:96–107.

    Google Scholar 

  44. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dynamic Medicine. 2009;8:1–25.

    Article  PubMed  Google Scholar 

  45. van Someren KA, Edwards AJ, Howatson G. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab. 2005;15(4):413–424.

    PubMed  Google Scholar 

  46. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC Jr. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol. 1996;81:2095–2104.

    CAS  PubMed  Google Scholar 

  47. Nitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of beta-hydroxy-beta-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol. 2000;89(4):1340–1344.

    Google Scholar 

  48. Jowko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J. Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition. 2001;17:558–566.

    Article  CAS  PubMed  Google Scholar 

  49. Wilson GJ, Wilson JM, Manninen AH. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr Metab. 2008;5:1.

    Article  Google Scholar 

  50. Gallagher PM, Carrithers JA, Godard MP, Schulze KE, Trappe SW. Beta-hydroxy-beta-methylbutyrate ingestion, part I: effects on strength and fat free mass. Med Sci Sports Exerc. 2000;32:2109–2115.

    Article  CAS  PubMed  Google Scholar 

  51. Vukovich MD, Stubbs NB, Bohlken RM. Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J Nutr. 2001;131:2049–2052.

    CAS  PubMed  Google Scholar 

  52. Panton LB, Rathmacher JA, Baier S, Nissen S. Nutritional supplementation of the leucine metabolite beta-hydroxy-beta-methylbutyrate (hmb) during resistance training. Nutrition. 2000;16:734–739.

    Article  CAS  PubMed  Google Scholar 

  53. Neighbors KL, Ransone JW, Jacobson BH, LeFavi RG. Effects of dietary β-hydroxy-β-methylbutyrate on body composition in collegiate football players. Med Sci Sports Exerc. 2000;32:S60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Zadik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zadik, Z. (2011). Amino Acids and Nonhormonal Compounds for Doping in Athletes. In: Ghigo, E., Lanfranco, F., Strasburger, C. (eds) Hormone Use and Abuse by Athletes. Endocrine Updates, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7014-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7014-5_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7013-8

  • Online ISBN: 978-1-4419-7014-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics