Advertisement

Other Applications

  • Michael Elad
Chapter

Abstract

This book is not meant to be a comprehensive textbook on image processing, and therefore it is not our intention to show how every familiar application in image processing finds a good use for the Sparse-Land model. Indeed, such a claim would not be true to begin with, as there are image processing problems for which the relation to this model has not been (and perhaps will never be) shown.

Keywords

Sparse Representation Bicubic Interpolation Image Separation Corrupted Pixel Barbara Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. 1.
    E. Abreu, M. Lightstone, S.K. Mitra SK, and K. Arakawa, A new efficient ap- proach for the removal of impulse noise from highly corrupted images, IEEE Trans. on Image Processing, 5(6):1012–1025, June, 1996.CrossRefGoogle Scholar
  2. 2.
    P. Abrial, Y. Moudden, J.-L. Starck, J. Bobin, M.J. Fadili, B. Afeyan and M. Nguyen, Morphological component analysis and inpainting on the sphere: Ap- plication in physics and astrophysics, Journal of Fourier Analysis and Applica- tions (JFAA), special issue on “Analysis on the Sphere”, 13(6):729–748, 2007.MATHMathSciNetGoogle Scholar
  3. 3.
    M. Aharon, M. Elad, and A.M. Bruckstein, The K-SVD: An algorithm for de- signing of overcomplete dictionaries for sparse representation, IEEE Trans. on Signal Processing, 54(11):4311–4322, November 2006.CrossRefGoogle Scholar
  4. 4.
    M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, Image coding us- ing wavelet transform, IEEE Trans. on Image Processing, 1(2):205–220, April 1992.CrossRefGoogle Scholar
  5. 5.
    J. Aujol, G. Aubert, L. Blanc-Feraud, and A. Chambolle, Image decomposi- tion: Application to textured images and SAR images, INRIA Project ARIANA, Sophia Antipolis, France, Tech. Rep. ISRN I3S/RR- 2003-01-FR, 2003.Google Scholar
  6. 6.
    J. Aujol and A. Chambolle, Dual norms and image decomposition models, IN- RIA Project ARIANA, Sophia Antipolis, France, Tech. Rep. ISRN 5130, 2004.Google Scholar
  7. 7.
    J. Aujol and B. Matei, Structure and texture compression, INRIA Project ARI- ANA, Sophia Antipolis, France, Tech. Rep. ISRN I3S/RR-2004-02-FR, 2004.Google Scholar
  8. 8.
    M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image in-painting, in Proc. 27th Annu. Conf. Computer Graphics and Interactive Techniques, pp. 417–424, 2000.Google Scholar
  9. 9.
    M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, Simultaneous structure and texture image inpainting, IEEE Trans. on Image Processing, 12(8):882–889, August 2003.CrossRefGoogle Scholar
  10. 10.
    A.L. Bertozzi, M. Bertalmio, and G. Sapiro, NavierStokes fluid dynamics and image and video inpainting, IEEE Computer Vision and Pattern Recognition (CVPR), 2001.Google Scholar
  11. 11.
    J. Bobin, Y. Moudden, J.-L. Starck, M.J. Fadili, and N. Aghanim, SZ and CMB reconstruction using GMCA, Statistical Methodology, 5(4):307–317, 2008.CrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Bobin, Y. Moudden, J.-L. Starck and M. Elad, Morphological diversity and source separation, IEEE Trans. on Signal Processing, 13(7):409–412, 2006.CrossRefGoogle Scholar
  13. 13.
    J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, Sparsity, morphologi- cal diversity and blind source separation, IEEE Trans. on Image Processing, 16(11):2662–2674, 2007.CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Bobin, J.-L. Starck J. Fadili, Y. Moudden and D.L Donoho, Morphological component analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, 16(11):2675–2681, 2007.CrossRefMathSciNetGoogle Scholar
  15. 15.
    E.J. Candès and F. Guo, New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction, Signal Pro- cessing, 82(5):1516–1543, 2002.Google Scholar
  16. 16.
    V. Caselles, G. Sapiro, C. Ballester, M. Bertalmio, J. Verdera, Filling-in by joint interpolation of vector fields and grey levels, IEEE Trans. on Image Processing, 10:1200–1211, 2001.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Chan and J. Shen, Local inpainting models and TV inpainting, SIAM J. Ap- plied Mathematics, 62:1019–1043, 2001.MathSciNetGoogle Scholar
  18. 18.
    T. Chen T, K.K. Ma, and L.H. Chen, Tri-state median filter for image denoising, IEEE Trans.on Image Processing, 8(12):1834–1838, December, 1999.CrossRefGoogle Scholar
  19. 19.
    R. Coifman and F. Majid, Adapted waveform analysis and denoising, in Progress in Wavelet Analysis and Applications, Frontiers ed., Y. Meyer and S. Roques, Eds., pp. 6376, 1993.Google Scholar
  20. 20.
    A. Criminisi, P. Perez, and K. Toyama, Object removal by exemplar based in- painting, IEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June 2003.Google Scholar
  21. 21.
    J.S. De Bonet, Multiresolution sampling procedure for analysis and synthesis of texture images, Proceedings of SIGGRAPH, 1997.Google Scholar
  22. 22.
    A.A. Efros and T.K. Leung, Texture synthesis by non-parametric sampling, International Conference on Computer Vision, Corfu, Greece, pp. 1033–1038, September 1999.Google Scholar
  23. 23.
    M. Elad and M. Aharon, Image denoising via learned dictionaries and sparse representation, IEEE Computer Vision and Pattern Recognition, New-York, June 17–22, 2006.Google Scholar
  24. 24.
    M. Elad and M. Aharon, Image denoising via sparse and redundant representa- tions over learned dictionaries, IEEE Trans. on Image Processing 15(12):3736–3745, December 2006.CrossRefMathSciNetGoogle Scholar
  25. 25.
    M. Elad, J-L. Starck, P. Querre, and D.L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Journal on Applied and Computational Harmonic Analysis, 19:340–358, November 2005.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    H.L. Eng and K.K. Ma, Noise adaptive soft-switching median filter, IEEE Trans.on Image Processing, 10(2):242–251, February, 2001.MATHCrossRefGoogle Scholar
  27. 27.
    M.J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations, The Computer Journal, 52(1):64–79, 2009.CrossRefGoogle Scholar
  28. 28.
    G. Gilboa, N. Sochen, and Y.Y. Zeevi, Texture preserving variational denoising using an adaptive fidelity term, in Proc. VLSM, Nice, France, pp. 137144, 2003.Google Scholar
  29. 29.
    O.G. Guleryuz, Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising - Part I: Theory, IEEE Trans. on Image Processing, 15(3):539–554, 2006.CrossRefGoogle Scholar
  30. 30.
    O.G. Guleryuz, Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising - Part II: Adaptive algorithms, IEEE Trans. on Image Processing, 15(3):555–571, 2006.CrossRefGoogle Scholar
  31. 31.
    J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, Discriminative learned dictionaries for local image analysis, IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008.Google Scholar
  32. 32.
    J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restora- tion, IEEE Trans. on Image Processing, 17(1):53–69, January 2008.CrossRefMathSciNetGoogle Scholar
  33. 33.
    J. Mairal, M. Leordeanu, F. Bach, M. Hebert and J. Ponce, Discriminative sparse image models for class-specific edge detection and image interpretation, European Conference on Computer Vision (ECCV) Marseille, France, 2008.Google Scholar
  34. 34.
    J. Mairal, G. Sapiro, and M. Elad, Learning multiscale sparse representations for image and video restoration, SIAM Multiscale Modeling and Simulation, 7(1):214–241, April 2008.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    F. Malgouyres, Minimizing the total variation under a general convex constraint for image restoration, IEEE Trans. on Image Processing, 11(12):1450–1456, December 2002.CrossRefMathSciNetGoogle Scholar
  36. 36.
    F. Meyer, A. Averbuch, and R. Coifman, Multilayered image representation: Application to image compression, IEEE Trans. on Image Processing, 11(9):1072–1080, September 2002.CrossRefMathSciNetGoogle Scholar
  37. 37.
    Y. Meyer, Oscillating patterns in image processing and non linear evolution equations, in Univ. Lecture Ser., vol. 22, AMS, 2002.Google Scholar
  38. 38.
    M. Nikolova, A variational approach to remove outliers and impulse noise, Journal Of Mathematical Imaging And Vision, 20(1–2):99–120, January 2004.CrossRefMathSciNetGoogle Scholar
  39. 39.
    G. Peyré, J. Fadili and J.-L. Starck, Learning the morphological diversity, to appear in SIAM Journal on Imaging Sciences.Google Scholar
  40. 40.
    L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation noise removal al- gorithm, Phys. D, 60:259–268, 1992.MATHCrossRefGoogle Scholar
  41. 41.
    A. Said and W. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchial trees, IEEE Trans. on Circuits Systems for Video Technology, 6(3):243–250, June 1996.CrossRefGoogle Scholar
  42. 42.
    J. Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. on Signal Processing, 41(12):3445–3462, December 1993.MATHCrossRefGoogle Scholar
  43. 43.
    N. Shoham and M. Elad, Alternating KSVD-denoising for texture separation, The IEEE 25-th Convention of Electrical and Electronics Engineers in Israel, Eilat Israel, December, 2008.Google Scholar
  44. 44.
    J.-L. Starck, E.J. Candès, and D. Donoho, The curvelet transform for image denoising, IEEE Trans. on Image Processing, 11(6):131–141, June 2002.Google Scholar
  45. 45.
    J.-L. Starck, D. Donoho, and E.J. Candès, Very high quality image restora- tion, the 9th SPIE Conf. Signal and Image Processing: Wavelet Applications in Signal and Image Processing, A. Laine, M. Unser, and A. Aldroubi, Eds., San Diego, CA, August 2001.Google Scholar
  46. 46.
    J.L. Starck, M. Elad, and D.L. Donoho, Image decomposition via the combina- tion of sparse representations and a variational approach, IEEE Trans. on Image Processing, 14(10):1570–1582, October 2005.CrossRefMathSciNetGoogle Scholar
  47. 47.
    J.-L. Starck, M. Elad, and D.L. Donoho, Redundant multiscale transforms and their application for morphological component analysis, Journal of Advances in Imaging and Electron Physics, 132:287–348, 2004.Google Scholar
  48. 48.
    J.-L. Starck and F. Murtagh, Astronomical Image and Data Analysis, New York: Springer-Verlag, 2002.Google Scholar
  49. 49.
    J.-L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and data analysis: The multiscale approach, Cambridge, U.K.: Cambridge Univ. Press, 1998.CrossRefGoogle Scholar
  50. 50.
    J.-L. Starck, M. Nguyen, and F. Murtagh, Wavelets and curvelets for image deconvolution: A combined approach, Signal Processing, 83(10):2279–2283, 2003.MATHCrossRefGoogle Scholar
  51. 51.
    G. Steidl, J. Weickert, T. Brox, P. Mrazek, and M. Welk, On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides, Dept. Math., Univ. Bremen, Bremen, Germany, Tech. Rep. 26, 2003.Google Scholar
  52. 52.
    L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, Journal of Scientific Computing, 19:553–577, 2003.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    M. Vetterli, Wavelets, approximation, and compression, IEEE Signal Process- ing Magazine, 18(5):59–73, September 2001.CrossRefGoogle Scholar
  54. 54.
    J. Yang, J. Wright, T. Huang, and Y. Ma, Image super-resolution as sparse repre- sentation of raw image patches, IEEE Computer Vision and Pattern Recognition (CVPR), 2008.Google Scholar
  55. 55.
    J. Yang, J. Wright, T. Huang, and Y. Ma, Image super-resolution via sparse rep- resentation, submitted to IEEE Trans. on Image Processing, September 2009.Google Scholar
  56. 56.
    M. Zibulevsky and B. Pearlmutter, Blind source separation by sparse decompo- sition in a signal dictionary, Neur. Comput., 13:863–882, 2001.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computer Science DepartmentThe Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations