Sensory Influence on Homeostasis and Lifespan: Molecules and Circuits

  • Joy Alcedo
  • Wolfgang Maier
  • Queelim Ch’ng
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 694)


The animal’s ability to maintain homeostasis in response to different environments can influence its survival. This chapter will discuss the mechanisms by which environmental cues act through sensory pathways to influence hormone secretion and homeostasis. Interestingly, recent studies also show that there is a sensory influence on lifespan that requires the modulation of hormonal signaling activities. Thus, this raises the possibility that the sensory influence on homeostasis underlies the sensory influence on lifespan.


Circadian Clock Mushroom Body Suprachiasmatic Nucleus Lifespan Extension Olfactory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson DL, Cox MM. Lehninger: Principles of Biochemistry. 5th ed. New York: W.H. Freeman and Company, 2008.Google Scholar
  2. 2.
    Newsholme P, Bender K, Kiely A et al. Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans 2007; 035:1180–1186.CrossRefGoogle Scholar
  3. 3.
    German MS. Glucose sensing in pancreatic islet beta cells: The key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci USA 1993; 90:1781–1785.PubMedCrossRefGoogle Scholar
  4. 4.
    Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3:153–165.PubMedCrossRefGoogle Scholar
  5. 5.
    Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature 2006; 444:854–859.PubMedCrossRefGoogle Scholar
  6. 6.
    Nolan CJ, Prentki M. The islet β-cell: fuel responsive and vulnerable. Trends Endocrinol Metab 2008; 19:285–291.PubMedCrossRefGoogle Scholar
  7. 7.
    Bargmann CI, Hartwieg E, Horvitz HR. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 1993; 74:515–527.PubMedCrossRefGoogle Scholar
  8. 8.
    Challet E, Caldelas I, Graff C et al. Synchronization of the molecular clockwork by light-and food-related cues in mammals. Biol Chem 2003; 384:711–719.PubMedCrossRefGoogle Scholar
  9. 9.
    Apfeld J, Kenyon C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 1999; 402:804–809.PubMedCrossRefGoogle Scholar
  10. 10.
    Alcedo J, Kenyon C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 2004; 41:45–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Libert S, Zwiener J, Chu X et al. Regulation of Drosophila life span by olfaction and food-derived odors. Science 2007; 315:1133–1137.PubMedCrossRefGoogle Scholar
  12. 12.
    Li W, Kennedy SG, Ruvkun G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 2003; 17:844–858.PubMedCrossRefGoogle Scholar
  13. 13.
    Prosser HM, Bradley A, Chesham JE et al. Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc Natl Acad Sci USA 2007; 104:648–653.PubMedCrossRefGoogle Scholar
  14. 14.
    Kramer A, Yang F-C, Kraves S et al. A screen for secreted factors of the suprachiasmatic nucleus. Methods Enzymol 2005; 393:645–663.PubMedCrossRefGoogle Scholar
  15. 15.
    Berthoud HR, Trimble ER, Siegel EG et al. Cephalic-phase insulin secretion in normal and pancreatic islet-transplanted rats. Am J Physiol 1980; 238:E336–E340.PubMedGoogle Scholar
  16. 16.
    Secchi A, Caldara R, Caumo A et al. Cephalic-phase insulin and glucagon release in normal subjects and in patients receiving pancreas transplantation. Metabolism 1995; 44:1153–1158.PubMedCrossRefGoogle Scholar
  17. 17.
    Barrera NP, Edwardson JM. The subunit arrangement and assembly of ionotropic receptors. Trends Neurosci 2008; 31:569–576.PubMedCrossRefGoogle Scholar
  18. 18.
    Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002; 3:639–650.PubMedCrossRefGoogle Scholar
  19. 19.
    Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 1991; 252:802–808.PubMedCrossRefGoogle Scholar
  20. 20.
    Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2008; 9:60–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Pierce KL, Lefkowitz RJ. Classical and new roles of β-arrestins in the regulation of G-PROTEIN-COUPLED receptors. Nat Rev Neurosci 2001; 2:727–533.PubMedCrossRefGoogle Scholar
  22. 22.
    Edwards RH. Neurotransmitter release: variations on a theme. Curr Biol 1998; 8:R883–885.PubMedCrossRefGoogle Scholar
  23. 23.
    Xu T, Xu P. Searching for molecular players differentially involved in neurotransmitter and neuropeptide release. Neurochem Res 2008; 33:1915–1919.PubMedCrossRefGoogle Scholar
  24. 24.
    Südhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004; 27:509–547.PubMedCrossRefGoogle Scholar
  25. 25.
    Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009; 323:474–477.PubMedCrossRefGoogle Scholar
  26. 26.
    Wojcik SM, Brose N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 2007; 55:11–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Neves SR, Ram PT, Iyengar R. G protein pathways. Science 2002; 296:1636–1639.PubMedCrossRefGoogle Scholar
  28. 28.
    Jiang M, Bajpayee NS. Molecular mechanisms of Go signaling. Neurosignals 2009; 17:23–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Mizuno N, Itoh H. Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals 2009; 17:42–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Sieburth D, Madison JM, Kaplan JM. PKC-1 regulates secretion of neuropeptides. Nat Neurosci 2007; 10:49–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Betz A, Ashery U, Rickmann M et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 1998; 21:123–136.PubMedCrossRefGoogle Scholar
  32. 32.
    Rhee JS, Betz A, Pyott S et al. β?phorbol ester-and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 2002; 108:121–133.PubMedCrossRefGoogle Scholar
  33. 33.
    Madison JM, Nurrish S, Kaplan JM. UNC-13 interaction with syntaxin is required for synaptic transmission. Curr Biol 2005; 15:2236–2242.PubMedCrossRefGoogle Scholar
  34. 34.
    Morgan A, Burgoyne RD, Barclay JW et al. Regulation of exocytosis by protein kinase C. Biochem Soc Trans 2005; 33:1341–1344.PubMedCrossRefGoogle Scholar
  35. 35.
    Yarfitz S, Hurley JB. Transduction mechanisms of vertebrate and invertebrate photoreceptors. J Biol Chem 1994; 269:14329–14332.PubMedGoogle Scholar
  36. 36.
    Squire LR, Bloom FE, Roberts JL et al. Fundamental Neuroscience. 2nd ed. USA: Elsevier Science, 2003.Google Scholar
  37. 37.
    Baba T, Sakisaka T, Mochida S et al. PKA-catalyzed phosphorylation of tomosyn and its implication in Ca2-dependent exocytosis of neurotransmitter. J Cell Biol 2005; 170:1113–1125.PubMedCrossRefGoogle Scholar
  38. 38.
    Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005; 85:1303–1342.PubMedCrossRefGoogle Scholar
  39. 39.
    Ronnett GV, Moon C. G proteins and olfactory signal transduction. Annu Rev Physiol 2002; 64:189–222.PubMedCrossRefGoogle Scholar
  40. 40.
    Hasin-Brumshtein Y, Lancet D, Olender T. Human olfaction: from genomic variation to phenotypic diversity. Trends Genet 2009; 25:178–184.PubMedCrossRefGoogle Scholar
  41. 41.
    Nurrish S, Segalat L, Kaplan JM. Serotonin inhibition of synaptic transmission: Gαo decreases the abundance of UNC-13 at release sites. Neuron 1999; 24:231–242.PubMedCrossRefGoogle Scholar
  42. 42.
    Ch’ng Q, Sieburth D, Kaplan JM. Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. PLoS Genet 2008; 4:e1000283.CrossRefGoogle Scholar
  43. 43.
    Hajdu-Cronin YM, Chen WJ, Patikoglou G et al. Antagonism between Goα?and Gqα?in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Go signaling and regulates Gqα?activity. Genes Dev 1999; 13:1780–1793.PubMedCrossRefGoogle Scholar


  1. 44.
    Winzell MS, Ahren B. G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes. Pharmacol Ther 2007; 116:437–448.PubMedCrossRefGoogle Scholar
  2. 45.
    Bargmann CI. Comparative chemosensation from receptors to ecology. Nature 2006; 444:295–301.PubMedCrossRefGoogle Scholar
  3. 46.
    Bargmann CI. Chemosensation in C. elegans. In: T.C.e.R. Community. WormBook. http://www., 2006.Google Scholar
  4. 47.
    Sato K, Pellegrino M, Nakagawa T et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008; 452:1002–1006.PubMedCrossRefGoogle Scholar
  5. 48.
    Wicher D, Schafer R, Bauernfeind R et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008; 452:1007–1011.PubMedCrossRefGoogle Scholar
  6. 49.
    Benton R, Vannice KS, Gomez-Diaz C et al. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 2009; 136:149–162.PubMedCrossRefGoogle Scholar
  7. 50.
    Chandrashekar J, Hoon MA, Ryba NJ et al. The receptors and cells for mammalian taste. Nature 2006; 444:288–294.PubMedCrossRefGoogle Scholar
  8. 51.
    Scott K. Taste recognition: food for thought. Neuron 2005; 48:455–464.PubMedCrossRefGoogle Scholar
  9. 52.
    Benton R. Chemical sensing in Drosophila. Curr Opin Neurobiol 2008; 18:357–363.PubMedCrossRefGoogle Scholar
  10. 53.
    Hukema R, Rademakers S, Dekkers M et al. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans. EMBO J 2006; 25:312–322.PubMedCrossRefGoogle Scholar
  11. 54.
    Welsh DK, Logothetis DE, Meister M et al. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14:697–706.PubMedCrossRefGoogle Scholar
  12. 55.
    Sakamoto K, Nagase T, Fukui H et al. Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 1998; 273:27039–27042.PubMedCrossRefGoogle Scholar
  13. 56.
    Yamazaki S, Numano R, Abe M et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288:682–685.PubMedCrossRefGoogle Scholar
  14. 57.
    Dunlap JC. Molecular bases for circadian clocks. Cell 1999; 96:271–290.PubMedCrossRefGoogle Scholar
  15. 58.
    Hattar S, Liao HW, Takao M et al. Melanopsin-containing retinal ganglion cells: architecture, projections and intrinsic photosensitivity. Science 2002; 295:1065–1070.PubMedCrossRefGoogle Scholar
  16. 59.
    Provencio I, Rollag MD, Castrucci AM. Anatomy: photoreceptive net in the mammalian retina. Nature 2002; 415:493–493.PubMedCrossRefGoogle Scholar
  17. 60.
    Ding JM, Chen D, Weber ET et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 1994; 266:1713–1717.PubMedCrossRefGoogle Scholar
  18. 61.
    Watts A. The efferent projections of the suprachiasmatic nucleus: anatomical insights into the control of circadian rhythms. In: Klein D, Moore R, Reppert S.M, eds. The Suprachiasmatic Nucleus—The Mind’s Clock. New York: Oxford, 1991:77–106.Google Scholar
  19. 62.
    Ha E, Yim S-V, Chung J-H et al. Melatonin stimulates glucose transport via insulin receptor substrate-1/ phosphatidylinositol 3-kinase pathway in C2C12 murine skeletal muscle cells. J Pineal Res 2006; 41:67–72.PubMedCrossRefGoogle Scholar
  20. 63.
    la Fleur SE, Kalsbeek A, Wortel J et al. Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocrinol 2001; 13:1025–1032.PubMedCrossRefGoogle Scholar
  21. 64.
    Wurtman RJ, Axelrod J, Phillips LS. Melatonin synthesis in the pineal gland: control by light. Science 1963; 142:1071–1073.PubMedCrossRefGoogle Scholar
  22. 65.
    Wurtman RJ, Axelrod J, Fischer JE. Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 1964; 143:1328–1329.PubMedCrossRefGoogle Scholar
  23. 66.
    Bargmann CI, Horvitz HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 1991; 251:1243–1246.PubMedCrossRefGoogle Scholar
  24. 67.
    Schackwitz WS, Inoue T, Thomas JH. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 1996; 17:719–728.PubMedCrossRefGoogle Scholar
  25. 68.
    Butcher RA, Fujita M, Schroeder FC et al. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol 2007; 3:420–422.PubMedCrossRefGoogle Scholar
  26. 69.
    Jeong PY, Jung M, Yim YH et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 2005; 433:541–545.PubMedCrossRefGoogle Scholar
  27. 70.
    Riddle DL, Swanson MM, Albert PS. Interacting genes in nematode dauer larva formation. Nature 1981; 290:668–671.PubMedCrossRefGoogle Scholar
  28. 71.
    Golden JW, Riddle DL. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food and temperature. Dev Biol 1984; 102:368–378.PubMedCrossRefGoogle Scholar
  29. 72.
    Vowels JJ, Thomas JH. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 1992; 130:105–123.PubMedGoogle Scholar
  30. 73.
    Kimura KD, Tissenbaum HA, Liu Y et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277:942–946.PubMedCrossRefGoogle Scholar
  31. 74.
    Wang J, Kim SK. Global analysis of dauer gene expression in Caenorhabditis elegans. Development 2003; 130:1621–1634.PubMedCrossRefGoogle Scholar
  32. 75.
    Narbonne P, Roy R. Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 2009; 457:210–214.PubMedCrossRefGoogle Scholar
  33. 76.
    White JG, Southgate E, Thomson JN et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986; 314.Google Scholar
  34. 77.
    Vosshall LB, Stocker RF. Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 2007; 30:505–533.PubMedCrossRefGoogle Scholar
  35. 78.
    Melcher C, Pankratz MJ. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol 2005; 3:e305.PubMedCrossRefGoogle Scholar
  36. 79.
    Scott K, Brady JR, Cravchik A et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 2001; 104:661–673.PubMedCrossRefGoogle Scholar
  37. 80.
    Joiner WJ, Crocker A, White BH et al. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 2006; 441:757–760.PubMedCrossRefGoogle Scholar
  38. 81.
    Pitman JL, McGill JJ, Keegan KP et al. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 2006; 441:753–756.PubMedCrossRefGoogle Scholar
  39. 82.
    Zafra MA, Molina F, Puerto A. The neural/cephalic phase reflexes in the physiology of nutrition. Neurosci Biobehav Rev 2006; 30:1032–1044.PubMedCrossRefGoogle Scholar
  40. 83.
    Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36:199–211.PubMedCrossRefGoogle Scholar
  41. 84.
    Richardson CT, Feldman M. Salivary response to food in humans and its effect on gastric acid secretion. Am J Physiol 1986; 250:G85–G91.PubMedGoogle Scholar
  42. 85.
    Feldman M, Richardson CT. Role of thought, sight, smell and taste of food in the cephalic phase of gastric acid secretion in humans. Gastroenterology 1986; 90:428–433.PubMedGoogle Scholar
  43. 86.
    Konturek SJ, Konturek JW. Cephalic phase of pancreatic secretion. Appetite 2000; 34:197–205.PubMedCrossRefGoogle Scholar
  44. 87.
    Lundy Jr RF, Norgren R. Gustatory system. In: Paxinos G, ed. The Rat Nervous System.USA: Elsevier, 2004:891–921.Google Scholar
  45. 88.
    Reed R. After the holy grail: establishing a molecular basis for mammalian olfaction. Cell 2004; 116:329–336.PubMedCrossRefGoogle Scholar
  46. 89.
    Yoon H, Enquist LW, Dulac C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 2005; 123:669–682.PubMedCrossRefGoogle Scholar
  47. 90.
    Merchenthaler I, Sétáló G, Petrusz P et al. Identification of hypophysiotropic luteinizing hormone-releasing hormone (LHRH) neurons by combined retrograde labeling and immunocytochemistry. Exp Clin Endocrinol 1989; 94:133–140.PubMedCrossRefGoogle Scholar
  48. 91.
    Witkin JW, Paden CM, Silverman AJ. The luteinizing hormone-releasing hormone (LHRH) systems in the rat brain. Neuroendocrinology 1982; 35:429–438.PubMedCrossRefGoogle Scholar
  49. 92.
    Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 1977; 6:413–429.PubMedCrossRefGoogle Scholar
  50. 93.
    Kenyon C, Chang J, Gensch E et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366:461–464.PubMedCrossRefGoogle Scholar
  51. 94.
    Larsen P, Albert PS, Riddle DL. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 1995; 139:1567–1583.PubMedGoogle Scholar
  52. 95.
    Lin K, Dorman JB, Rodan A et al. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997; 278:1319–1322.PubMedCrossRefGoogle Scholar
  53. 96.
    Ogg S, Paradis S, Gottlieb S et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997; 389:994–999.PubMedCrossRefGoogle Scholar
  54. 97.
    Henderson ST, Johnson TE. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 2001; 11:1975–1980.PubMedCrossRefGoogle Scholar
  55. 98.
    Lin K, Hsin H, Libina N et al. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 2001; 28:139–145.PubMedCrossRefGoogle Scholar
  56. 99.
    Lee RYN, Hench J, Ruvkun G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 2001; 11:1950–1957.PubMedCrossRefGoogle Scholar
  57. 100.
    Pierce SB, Costa M, Wisotzkey R et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001; 15:672–686.PubMedCrossRefGoogle Scholar
  58. 101.
    Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 1999; 399:362–366.PubMedCrossRefGoogle Scholar
  59. 102.
    Kodama E, Kuhara A, Mohri-Shiomi A et al. Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes Dev 2006; 20:2955–2960.PubMedCrossRefGoogle Scholar
  60. 103.
    Larsson MC, Domingos AI, Jones WD et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004; 43:703–714.PubMedCrossRefGoogle Scholar
  61. 104.
    Lin SJ, Defossez PA, Guarente LS. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289:2126–2128.PubMedCrossRefGoogle Scholar
  62. 105.
    Clancy DJ, Gems D, Hafen E et al. Dietary restriction in long-lived dwarf flies. Science 2002; 296:319.PubMedCrossRefGoogle Scholar
  63. 106.
    McCay CM, Cromwell MF, Maynard LA. The effect of retarded growth upon the length of life span and ultimate body size. J Nutr 1935; 10:63–79.Google Scholar
  64. 107.
    Brogiolo W, Stocker H, Ikeya T et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 2001; 11:213–221.PubMedCrossRefGoogle Scholar
  65. 108.
    Tatar M, Kopelman A, Epstein D et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001; 292:107–110.PubMedCrossRefGoogle Scholar
  66. 109.
    Clancy DJ, Gems D, Harshman LG et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001; 292:104–106.PubMedCrossRefGoogle Scholar
  67. 110.
    Broughton SJ, Piper MD, Ikeya T et al. Longer lifespan, altered metabolism and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci USA 2005; 102:3105–3110.PubMedCrossRefGoogle Scholar
  68. 111.
    Giannakou ME, Goss M, Jünger MA et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 2004; 305:361.PubMedCrossRefGoogle Scholar
  69. 112.
    Hwangbo DS, Gersham B, Tu M-P et al. Drosophila dFOXO controls lifespan and regulates insulin signaling in brain and fat body. Nature 2004; 429:562–566.PubMedCrossRefGoogle Scholar
  70. 113.
    Lee SS, Kennedy S, Tolonen AC et al. DAF-16 target genes that control C. elegans life-span and metabolism. Science 2003; 300: 644–647.PubMedCrossRefGoogle Scholar
  71. 114.
    Murphy CT, McCarroll SA, Bargmann CI et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003; 424:277–283.PubMedCrossRefGoogle Scholar
  72. 115.
    Mak HY, Nelson LS, Basson M et al. Polygenic control of Caenorhabditis elegans fat storage. Nat Genet 2006; 38:363–368.PubMedCrossRefGoogle Scholar
  73. 116.
    Wang MC, O’Rourke EJ, Ruvkun G. Fat metabolism links germline stem cells and longevity in C. elegans. Science 2008; 322:957–960.PubMedCrossRefGoogle Scholar
  74. 117.
    Martin B, Maudsley S, White CM et al. Hormones in the naso-oropharynx: endocrine modulation of taste and smell. Trends Endocrinol Metab 2009; 20:163–170.PubMedCrossRefGoogle Scholar
  75. 118.
    Chauhan J, Hawrysh ZJ, Gee M et al. Age-related olfactory and taste changes and interrelationships between taste and nutrition. J Am Diet Assoc 1987; 87:1543–1550.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
  2. 2.MRC Centre for Developmental NeurobiologyKing’s CollegeLondonUK

Personalised recommendations