Advertisement

Age-Related Changes in Bone and Soft Tissue

  • David Rispler
  • Susan M. Day
Chapter

Abstract

The population of the United States is aging – by 2030, the US Census Bureau estimates that 1 in 5 will be 65 or older. The rapid increase in the size of this population is expected to significantly impact orthopaedic practice especially. The aging process, a normal decline in cell, tissue, and organ function, ultimately leads to progressive changes in the physiology of all the components of the musculoskeletal system: bone, cartilage, muscle, ligament, and tendon. Such change can result in several clinical problems for patients and their treating physicians. Among the most common ailments affecting the geriatric patient are fragility fractures, joint degeneration, and injuries to the aging athlete. The risk of fragility fractures increases as patients suffer from diminished bone mass, osteoporosis, and diminished muscle bulk, which results in weakness that can magnify the effects of neurologic degeneration on gait and posture. Another progressive disabling condition is joint degeneration leading to pain, stiffness, and decreased mobility. As the baby boomer generation matures, but continues to participate in high-impact activities, patients present to physicians with more overuse injuries and traumatic injuries to the muscles, tendons, and ligaments, which function to protect our joints and skeleton.

Keywords

Bone Mineral Density Vertebral Fracture Articular Cartilage Zoledronic Acid Intervertebral Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nordin M, Frankel V (2001) Basic biomechanics of the musculoskeletal system. Lippincott, Williams and Wilkins, Philadelphia, PAGoogle Scholar
  2. 2.
    Siffert RS, Levy RN (1981) Trabecular patterns and the internal architecture of bone. Mt Sinai J Med 48(3):221–229PubMedGoogle Scholar
  3. 3.
    Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45(8 Pt 2):1353–1358PubMedGoogle Scholar
  4. 4.
    Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13(2):105–112PubMedGoogle Scholar
  5. 5.
    Watts NB (1988) Osteoporosis. Am Fam Physician 38(5):193–207PubMedGoogle Scholar
  6. 6.
    Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1996) Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 45:371–386PubMedGoogle Scholar
  7. 7.
    Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21(2):115–137PubMedGoogle Scholar
  8. 8.
    Melton LJ 3rd, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12(7):1083–1091PubMedGoogle Scholar
  9. 9.
    Parfitt AM, Han ZH, Palnitkar S, Rao DS, Shih MS, Nelson D (1997) Effects of ethnicity and age or menopause on osteoblast function, bone mineralization, and osteoid accumulation in iliac bone. J Bone Miner Res 12(11):1864–1873PubMedGoogle Scholar
  10. 10.
    Yavropoulou MP, Yovos JG (2007) The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens) 6(4):279–294Google Scholar
  11. 11.
    Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764PubMedGoogle Scholar
  12. 12.
    Richelson LS, Wahner HW, Melton LJ III, Riggs BL (1984) Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 311(20):1273–1275PubMedGoogle Scholar
  13. 13.
    Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA (1998) The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 19(4):253–286PubMedGoogle Scholar
  14. 14.
    Qu Q, Harkonen PL, Monkkonen J, Vaananen HK (1999) Conditioned medium of estrogen-treated osteoblasts inhibits osteoclast maturation and function in vitro. Bone 25(2):211–215PubMedGoogle Scholar
  15. 15.
    Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409PubMedGoogle Scholar
  16. 16.
    Spelsberg TC, Subramaniam M, Riggs BL, Khosla S (1999) The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol 13(6):819–828PubMedGoogle Scholar
  17. 17.
    Jiang C, Giger ML, Kwak SM, Chinander MR, Martell JM, Favus MJ (2000) Normalized BMD as a predictor of bone strength. Acad Radiol 7(1):33–39PubMedGoogle Scholar
  18. 18.
    Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341(8837):72–75PubMedGoogle Scholar
  19. 19.
    Hui SL, Slemenda CW, Johnston CC Jr (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81(6):1804–1809PubMedGoogle Scholar
  20. 20.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259PubMedGoogle Scholar
  21. 21.
    Lenart BA, Neviaser AS, Lyman S et al (2009) Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int 20(8):1353–1362PubMedGoogle Scholar
  22. 22.
    Johnston C, Slemenda C, Melton L (eds) (1996) Bone density measurements and the management of osteoporosis. Lippincott-Raven, PhiladelphiaGoogle Scholar
  23. 23.
    Sone T, Imai Y, Tomomitsu T, Fukunaga M (1998) Calcaneus as a site for the assessment of bone mass. Bone 22(5 Suppl):155S–157SPubMedGoogle Scholar
  24. 24.
    Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16(6):1120–1129PubMedGoogle Scholar
  25. 25.
    Bukata SV, Bostrom MP, Buckwalter JA, Lane J (2005) Physiology of Aging. In: Vaccaro AR (ed) Orthopaedic knowledge update. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 70–77Google Scholar
  26. 26.
    National Osteoporosis Foundation (2003) Physician’s guide to the prevention and treatment of osteoporosis. Excerpta Medica, Inc, Belle Mead, NJGoogle Scholar
  27. 27.
    Gehrig L, Lane J, O’Connor MI (2008) Osteoporosis: management and treatment strategies for orthopaedic surgeons. J Bone Joint Surg Am 90(6):1362–1374PubMedGoogle Scholar
  28. 28.
    Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84(1):18–28PubMedGoogle Scholar
  29. 29.
    Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP (2007) A higher dose of vitamin D reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J Am Geriatr Soc 55(2):234–239PubMedGoogle Scholar
  30. 30.
    Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–1541PubMedGoogle Scholar
  31. 31.
    Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822PubMedGoogle Scholar
  32. 32.
    Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280(24):2077–2082PubMedGoogle Scholar
  33. 33.
    Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282(14):1344–1352PubMedGoogle Scholar
  34. 34.
    Orwoll E, Ettinger M, Weiss S et al (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343(9):604–610PubMedGoogle Scholar
  35. 35.
    Reginster J, Minne HW, Sorensen OH et al (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 11(1):83–91PubMedGoogle Scholar
  36. 36.
    Reginster JY, Adami S, Lakatos P et al (2006) Efficacy and ­tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. Ann Rheum Dis 65(5):654–661PubMedGoogle Scholar
  37. 37.
    Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357(18):1799–1809PubMedGoogle Scholar
  38. 38.
    McClung MR, Geusens P, Miller PD et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344(5):333–340PubMedGoogle Scholar
  39. 39.
    Papapoulos SE, Quandt SA, Liberman UA, Hochberg MC, Thompson DE (2005) Meta-analysis of the efficacy of alendronate for the prevention of hip fractures in postmenopausal women. Osteoporos Int 16(5):468–474PubMedGoogle Scholar
  40. 40.
    Khosla S, Burr D, Cauley J et al (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22(10):1479–1491PubMedGoogle Scholar
  41. 41.
    Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90(3):1294–1301PubMedGoogle Scholar
  42. 42.
    Stepan JJ, Burr DB, Pavo I et al (2007) Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Bone 41(3):378–385PubMedGoogle Scholar
  43. 43.
    Ensrud KE, Barrett-Connor EL, Schwartz A et al (2004) Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J Bone Miner Res 19(8):1259–1269PubMedGoogle Scholar
  44. 44.
    Chesnut CH 3rd, Silverman S, Andriano K et al (2000) A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med 109(4):267–276PubMedGoogle Scholar
  45. 45.
    Munoz-Torres M, Alonso G, Raya MP (2004) Calcitonin therapy in osteoporosis. Treat Endocrinol 3(2):117–132PubMedGoogle Scholar
  46. 46.
    Delmas PD, Bjarnason NH, Mitlak BH et al (1997) Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337(23):1641–1647PubMedGoogle Scholar
  47. 47.
    Delmas PD, Ensrud KE, Adachi JD et al (2002) Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab 87(8):3609–3617PubMedGoogle Scholar
  48. 48.
    Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282(7):637–645PubMedGoogle Scholar
  49. 49.
    Siris ES, Harris ST, Eastell R et al (2005) Skeletal effects of raloxifene after 8 years: results from the continuing outcomes relevant to Evista (CORE) study. J Bone Miner Res 20(9):1514–1524PubMedGoogle Scholar
  50. 50.
    Barrett-Connor E, Mosca L, Collins P et al (2006) Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med 355(2):125–137PubMedGoogle Scholar
  51. 51.
    Gennari L, Merlotti D, Valleggi F, Martini G, Nuti R (2007) Selective estrogen receptor modulators for postmenopausal ­osteoporosis: current state of development. Drugs Aging 24(5):361–379PubMedGoogle Scholar
  52. 52.
    Anderson GL, Limacher M, Assaf AR et al (2004) Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women;s Health Initiative randomized controlled trial. JAMA 291(14):1701–1712PubMedGoogle Scholar
  53. 53.
    Cauley JA, Robbins J, Chen Z et al (2003) Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290(13):1729–1738PubMedGoogle Scholar
  54. 54.
    Rossouw JE, Anderson GL, Prentice RL et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288(3):321–333PubMedGoogle Scholar
  55. 55.
    Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441PubMedGoogle Scholar
  56. 56.
    Lindsay R, Miller P, Pohl G, Glass EV, Chen P, Krege JH (2009) Relationship between duration of teriparatide therapy and clinical outcomes in postmenopausal women with osteoporosis. Osteoporos Int 20(6):943–948PubMedGoogle Scholar
  57. 57.
    Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M (2004) Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol 32(4):426–438PubMedGoogle Scholar
  58. 58.
    Vahle JL, Sato M, Long GG et al (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human ­parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol 30(3):312–321PubMedGoogle Scholar
  59. 59.
    Rabenda V, Vanoverloop J, Fabri V et al (2008) Low incidence of anti-osteoporosis treatment after hip fracture. J Bone Joint Surg Am 90(10):2142–2148PubMedGoogle Scholar
  60. 60.
    Rozental TD, Makhni EC, Day CS, Bouxsein ML (2008) Improving evaluation and treatment for osteoporosis following distal radial fractures. A prospective randomized intervention. J Bone Joint Surg Am 90(5):953–961PubMedGoogle Scholar
  61. 61.
    Bogoch ER, Elliot-Gibson V, Beaton DE, Jamal SA, Josse RG, Murray TM (2006) Effective initiation of osteoporosis diagnosis and treatment for patients with a fragility fracture in an orthopaedic environment. J Bone Joint Surg Am 88(1):25–34PubMedGoogle Scholar
  62. 62.
    Miki RA, Oetgen ME, Kirk J, Insogna KL, Lindskog DM (2008) Orthopaedic management improves the rate of early osteoporosis treatment after hip fracture. A randomized clinical trial. J Bone Joint Surg Am 90(11):2346–2353PubMedGoogle Scholar
  63. 63.
    Scherl SA, Templeton K (2003) The aging athlete. In: Bernstein J (ed) Musculoskeletal medicine. American Academy of Orthopaedic Surgeons, Rosemount, ILGoogle Scholar
  64. 64.
    Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A(5):822–832PubMedGoogle Scholar
  65. 65.
    Noonan TJ, Garrett WE Jr (1999) Muscle strain injury: diagnosis and treatment. J Am Acad Orthop Surg 7(4):262–269PubMedGoogle Scholar
  66. 66.
    Grimby G, Saltin B (1983) The ageing muscle. Clin Physiol 3(3):209–218PubMedGoogle Scholar
  67. 67.
    Bolin DJ, Stone DA (2002) Overuse injuries. In: Fitzgerald RH, Kaufer H, Malkani AL (eds) Orthopaedics. Mosby, St. Louis, MO, pp 551–564, Section 4: Chapter 5Google Scholar
  68. 68.
    Mair SD, Seaber AV, Glisson RR, Garrett WE Jr (1996) The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med 24(2):137–143PubMedGoogle Scholar
  69. 69.
    Noonan TJ, Best TM, Seaber AV, Garrett WE Jr (1993) Thermal effects on skeletal muscle tensile behavior. Am J Sports Med 21(4):517–522PubMedGoogle Scholar
  70. 70.
    Safran MR, Garrett WE Jr, Seaber AV, Glisson RR, Ribbeck BM (1988) The role of warmup in muscular injury prevention. Am J Sports Med 16(2):123–129PubMedGoogle Scholar
  71. 71.
    Alexander JL, Phillips WT, Wagner CL (2008) The effect of strength training on functional fitness in older patients with chronic lung disease enrolled in pulmonary rehabilitation. Rehabil Nurs 33(3):91–97PubMedGoogle Scholar
  72. 72.
    Sullivan DH, Roberson PK, Smith ES, Price JA, Bopp MM (2007) Effects of muscle strength training and megestrol acetate on strength, muscle mass, and function in frail older people. J Am Geriatr Soc 55(1):20–28PubMedGoogle Scholar
  73. 73.
    Astrom M (1997) On the nature and etiology of chronic achilles tendinopathy. University of Lund, Lund, SwedenGoogle Scholar
  74. 74.
    Jozsa LG, Kannus P (1997) Human tendons: anatomy, physiology and pathology. Human Kinetics, Champaign, ILGoogle Scholar
  75. 75.
    Movin T, Kristoffersen-Wiberg M, Shalabi A, Gad A, Aspelin P, Rolf C (1998) Intratendinous alterations as imaged by ultrasound and contrast medium-enhanced magnetic resonance in chronic achillodynia. Foot Ankle Int 19(5):311–317PubMedGoogle Scholar
  76. 76.
    Kirkendall DT, Garrett WE (1997) Function and biomechanics of tendons. Scand J Med Sci Sports 7(2):62–66PubMedGoogle Scholar
  77. 77.
    Tuite DJ, Renstrom PA, O’Brien M (1997) The aging tendon. Scand J Med Sci Sports 7(2):72–77PubMedGoogle Scholar
  78. 78.
    Kraushaar BS, Nirschl RP (1999) Tendinosis of the elbow (tennis elbow). Clinical features and findings of histological, immunohistochemical, and electron microscopy studies. J Bone Joint Surg Am 81(2):259–278PubMedGoogle Scholar
  79. 79.
    Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 87(1):187–202PubMedGoogle Scholar
  80. 80.
    Kvist M, Jozsa L, Jarvinen M, Kvist H (1985) Fine structural ­alterations in chronic Achilles paratenonitis in athletes. Pathol Res Pract 180(4):416–423PubMedGoogle Scholar
  81. 81.
    Kirkendall DT, Garrett WE (2002) Muscle, tendon, and ligament: structure, function and physiology. In: Fitzgerald RH, Kaufer H, Malkani AL (eds) Orthopaedics. Mosby, St. Louis, MO, pp 168–180, Section 2: Chapter 4Google Scholar
  82. 82.
    Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat. Connect Tissue Res 6(3):161–166PubMedGoogle Scholar
  83. 83.
    Bailey AJ, Robins SP, Balian G (1974) Biological significance of the intermolecular crosslinks of collagen. Nature 251(5471):105–109PubMedGoogle Scholar
  84. 84.
    Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–748PubMedGoogle Scholar
  85. 85.
    Astrom M, Rausing A (1995 Jul) Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings. Clin Orthop Relat Res (316):151–164Google Scholar
  86. 86.
    Khan KM, Maffulli N (1998) Tendinopathy: an Achilles’ heel for athletes and clinicians. Clin J Sport Med 8(3):151–154PubMedGoogle Scholar
  87. 87.
    Movin T, Gad A, Reinholt FP, Rolf C (1997) Tendon pathology in long-standing achillodynia. Biopsy findings in 40 patients. Acta Orthop Scand 68(2):170–175PubMedGoogle Scholar
  88. 88.
    Oxlund H (1982) Long term local cortisol treatment of tendons and the indirect effect on skin. An experimental study in rats. Scand J Plast Reconstr Surg 16(1):61–66PubMedGoogle Scholar
  89. 89.
    Best TM, Garrett WE (1994) Muscle and Tendon. In: DeLee J, Drez D (eds) Orthopedic sports medicine: principles and practice. WB Saunders, Philadelphia, PAGoogle Scholar
  90. 90.
    Clayton RA, Court-Brown CM (2008) The epidemiology of ­musculoskeletal tendinous and ligamentous injuries. Injury 39(12):1338–1344PubMedGoogle Scholar
  91. 91.
    Brinker MR (2000) Basic Sciences. In: Miller MD (ed) Review of orthopaedics. WB Saunders, Philadelphia, PAGoogle Scholar
  92. 92.
    Mow VC, Proctor CS, Kelly MA (1989) Biomechanics of Articular Cartilage. In: Nordin M, Frankel V (eds) Basic biomechanics of the musculoskeletal system, 2nd edn. Lea and Febiger, Philadelphia, PA, pp 31–58Google Scholar
  93. 93.
    Aydog ST, Korkusuz P, Doral MN, Tetik O, Demirel HA (2006) Decrease in the numbers of mechanoreceptors in rabbit ACL: the effects of ageing. Knee Surg Sports Traumatol Arthrosc 14(4):325–329PubMedGoogle Scholar
  94. 94.
    Rispler DT (2006) Disorders of Muscles, Tendons, and Ligaments. In: Greene WB (ed) Netter’s orthopaedics. Saunders Elsevier, Philadelphia, PA, pp 99–118Google Scholar
  95. 95.
    Dahm DL, Wulf CA, Dajani KA, Dobbs RE, Levy BA, Stuart MA (2008) Reconstruction of the anterior cruciate ligament in patients over 50 years. J Bone Joint Surg Br 90(11):1446–1450PubMedGoogle Scholar
  96. 96.
    Pelligrini VD (2006) Arthritic Disorders. In: Greene WB (ed) Netter’s orthopaedics. Saunders Elsevier, Philadelphia, PA, pp 69–98Google Scholar
  97. 97.
    Centers for Disease Control and Prevention (CDC) (2006) Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation – United States, 2003-2005. MMWR Morb Mortal Wkly Rep 55(40):1089–1092Google Scholar
  98. 98.
    Corti MC, Rigon C (2003) Epidemiology of osteoarthritis: prevalence, risk factors and functional impact. Aging Clin Exp Res 15(5):359–363PubMedGoogle Scholar
  99. 99.
    Bayliss MT (1990) Proteoglycan structure and metabolism during maturation and ageing of human articular cartilage. Biochem Soc Trans 18(5):799–802PubMedGoogle Scholar
  100. 100.
    Buckwalter JA, Heckman JD, Petrie DP (2003) An AOA critical issue: aging of the North American population: new challenges for orthopaedics. J Bone Joint Surg Am 85-A(4):748–758PubMedGoogle Scholar
  101. 101.
    Pujol JP, Chadjichristos C, Legendre F et al (2008) Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res 49(3):293–297PubMedGoogle Scholar
  102. 102.
    Ray A, Ray BK (2008) An inflammation-responsive transcription factor in the pathophysiology of osteoarthritis. Biorheology 45(3–4):399–409PubMedGoogle Scholar
  103. 103.
    Lane NE, Kremer LB (1995) Radiographic indices for osteoarthritis. Rheum Dis Clin North Am 21(2):379–394PubMedGoogle Scholar
  104. 104.
    Petersson IF, Boegard T, Saxne T, Silman AJ, Svensson B (1997) Radiographic osteoarthritis of the knee classified by the Ahlback and Kellgren & Lawrence systems for the tibiofemoral joint in people aged 35-54 years with chronic knee pain. Ann Rheum Dis 56(8):493–496PubMedGoogle Scholar
  105. 105.
    Bhattacharyya T, Gale D, Dewire P et al (2003) The clinical importance of meniscal tears demonstrated by magnetic resonance ­imaging in osteoarthritis of the knee. J Bone Joint Surg Am 85-A(1):4–9PubMedGoogle Scholar
  106. 106.
    Englund M, Guermazi A, Gale D et al (2008) Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med 359(11):1108–1115PubMedGoogle Scholar
  107. 107.
    Rozendaal RM, Uitterlinden EJ, van Osch GJ et al (2009) Effect of glucosamine sulphate on joint space narrowing, pain and function in patients with hip osteoarthritis; subgroup analyses of a randomized controlled trial. Osteoarthritis Cartilage 17(4):427–432PubMedGoogle Scholar
  108. 108.
    Sawitzke AD, Shi H, Finco MF et al (2008) The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum 58(10):3183–3191PubMedGoogle Scholar
  109. 109.
    Garland D, Holt P, Harrington JT, Caldwell J, Zizic T, Cholewczynski J (2007) A 3-month, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a highly optimized, capacitively coupled, pulsed electrical stimulator in patients with osteoarthritis of the knee. Osteoarthritis Cartilage 15(6):630–637PubMedGoogle Scholar
  110. 110.
    Mont MA, Hungerford DS, Caldwell JR et al (2006) Pulsed electrical stimulation to defer TKA in patients with knee osteoarthritis. Orthopedics 29(10):887–892PubMedGoogle Scholar
  111. 111.
    Caborn D, Rush J, Lanzer W, Parenti D, Murray C (2004) A randomized, single-blind comparison of the efficacy and tolerability of hylan G-F 20 and triamcinolone hexacetonide in patients with osteoarthritis of the knee. J Rheumatol 31(2):333–343PubMedGoogle Scholar
  112. 112.
    Leopold SS, Redd BB, Warme WJ, Wehrle PA, Pettis PD, Shott S (2003) Corticosteroid compared with hyaluronic acid injections for the treatment of osteoarthritis of the knee. A prospective, randomized trial. J Bone Joint Surg Am 85-A(7):1197–1203PubMedGoogle Scholar
  113. 113.
    Petrella RJ, Petrella M (2006) A prospective, randomized, double-blind, placebo controlled study to evaluate the efficacy of intraarticular hyaluronic acid for osteoarthritis of the knee. J Rheumatol 33(5):951–956PubMedGoogle Scholar
  114. 114.
    Herrlin S, Hallander M, Wange P, Weidenhielm L, Werner S (2007) Arthroscopic or conservative treatment of degenerative medial meniscal tears: a prospective randomised trial. Knee Surg Sports Traumatol Arthrosc 15(4):393–401PubMedGoogle Scholar
  115. 115.
    Kirkley A, Birmingham TB, Litchfield RB et al (2008) A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 359(11):1097–1107PubMedGoogle Scholar
  116. 116.
    Moseley JB, O’Malley K, Petersen NJ et al (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347(2):81–88PubMedGoogle Scholar
  117. 117.
    Dervin GF, Stiell IG, Rody K, Grabowski J (2003) Effect of arthroscopic debridement for osteoarthritis of the knee on health-related quality of life. J Bone Joint Surg Am 85-A(1):10–19PubMedGoogle Scholar
  118. 118.
    Alford JW, Cole BJ (2005) Cartilage restoration, part 2: techniques, outcomes, and future directions. Am J Sports Med 33(3):443–460PubMedGoogle Scholar
  119. 119.
    Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A(2):185–192PubMedGoogle Scholar
  120. 120.
    Jakobsen RB, Engebretsen L, Slauterbeck JR (2005) An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am 87(10):2232–2239PubMedGoogle Scholar
  121. 121.
    Jones DG, Peterson L (2006) Autologous chondrocyte implantation. J Bone Joint Surg Am 88(11):2502–2520PubMedGoogle Scholar
  122. 122.
    Ethgen O, Bruyere O, Richy F, Dardennes C, Reginster JY (2004) Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am 86-A(5):963–974PubMedGoogle Scholar
  123. 123.
    Wright RJ, Sledge CB, Poss R, Ewald FC, Walsh ME, Lingard EA (2004) Patient-reported outcome and survivorship after Kinemax total knee arthroplasty. J Bone Joint Surg Am 86-A(11):2464–2470PubMedGoogle Scholar
  124. 124.
    Buckwalter JA (1995) Aging and degeneration of the human ­intervertebral disc. Spine 20(11):1307–1314PubMedGoogle Scholar
  125. 125.
    Adams P, Eyre DR, Muir H (1977) Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheumatol Rehabil 16(1):22–29PubMedGoogle Scholar
  126. 126.
    Deutman R (1992) The case for chemonucleolysis in discogenic sciatica. A review. Acta Orthop Scand 63(5):571–575PubMedGoogle Scholar
  127. 127.
    Ruan D, He Q, Ding Y, Hou L, Li J, Luk KD (2007) Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet 369(9566):993–999PubMedGoogle Scholar
  128. 128.
    Favus M (ed) (1996) Primer on the metabolic bone diseases and disorders of mineral metabolism, 3rd edn. Lippincott Raven, PhiladelphiaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Michigan State Orthopedic Residency Program, Grand Rapids Orthopedic Residency ProgramGrand RapidsUSA

Personalised recommendations