Diabetes in the Elderly

  • Klara Rosenquist
  • Kitt F. Petersen


Diabetes mellitus is a metabolic disease characterized by hyperglycemia, resulting from a relative or absolute deficiency of insulin [1]. Type 2 diabetes is the most common chronic metabolic disease in the elderly, affecting ∼30 ­million individuals 65 years of age or older in developed countries [2]. It is estimated that approximately 40% of ­people over the age of 65 have diabetes or impaired glucose tolerance (IGT) [3, 4] (Fig. 39.1).


Oral Glucose Tolerance Test Muscle Glucose Uptake Muscle Insulin Resistance Pancreatic Insulin Secretion Sulfonylurea Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Expert committee on the diagnosis and classification of diabetes mellitus (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26(Suppl 1): S5–S20Google Scholar
  2. 2.
    King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21(9):1414–1431PubMedCrossRefGoogle Scholar
  3. 3.
    Singh I, Marshall MC Jr (1995) Diabetes mellitus in the elderly. Endocrinol Metab Clin North Am 24(2):255–272PubMedGoogle Scholar
  4. 4.
    Harris MI (1993) Undiagnosed NIDDM: clinical and public health issues. Diabetes Care 16(4):642–652PubMedGoogle Scholar
  5. 5.
    Sasaki A, Suzuki T, Horiuchi N (1982) Development of diabetes in Japanese subjects with impaired glucose tolerance: a seven year follow-up study. Diabetologia 22(3):154–157PubMedCrossRefGoogle Scholar
  6. 6.
    Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH (1989) Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet 1(8651):1356–1359PubMedCrossRefGoogle Scholar
  7. 7.
    Petersen KF, Befroy D, Dufour S et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300(5622):1140–1142PubMedCrossRefGoogle Scholar
  8. 8.
    Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87(2):507–520PubMedCrossRefGoogle Scholar
  9. 9.
    Dresner A, Laurent D, Marcucci M et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103(2):253–259PubMedCrossRefGoogle Scholar
  10. 10.
    Yu C, Chen Y, Cline GW et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52):50230–50236PubMedCrossRefGoogle Scholar
  11. 11.
    Savage DB, Petersen KF, Shulman GI (2005) Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 45(5):828–833PubMedCrossRefGoogle Scholar
  12. 12.
    Krssak M, Falk Petersen K, Dresner A et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42(1):113–116PubMedCrossRefGoogle Scholar
  13. 13.
    Petersen KF, Dufour S, Feng J et al (2006) Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci USA 103(48):18273–18277PubMedCrossRefGoogle Scholar
  14. 14.
    Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118(9): 2992–3002PubMedCrossRefGoogle Scholar
  15. 15.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671PubMedCrossRefGoogle Scholar
  16. 16.
    Perseghin G, Price TB, Petersen KF et al (1996) Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335(18):1357–1362PubMedCrossRefGoogle Scholar
  17. 17.
    Chang AM, Halter JB (2003) Aging and insulin secretion. Am J Physiol Endocrinol Metab 284(1):E7–E12PubMedGoogle Scholar
  18. 18.
    American Diabetes Association (2008) Standards of medical care in diabetes – 2008. Diabetes Care 31(Suppl 1):S12–S54CrossRefGoogle Scholar
  19. 19.
    Gerstein HC, Miller ME, Byington RP et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559PubMedCrossRefGoogle Scholar
  20. 20.
    Conley KE, Marcinek DJ, Villarin J (2007) Mitochondrial dysfunction and age. Curr Opin Clin Nutr Metab Care 10(6):688–692PubMedCrossRefGoogle Scholar
  21. 21.
    Hawley JA, Lessard SJ (2008) Exercise training-induced improvements in insulin action. Acta Physiol (Oxf) 192(1):127–135CrossRefGoogle Scholar
  22. 22.
    LeBlanc J, Nadeau A, Richard D, Tremblay A (1981) Studies on the sparing effect of exercise on insulin requirements in human subjects. Metabolism 30(11):1119–1124PubMedCrossRefGoogle Scholar
  23. 23.
    Gerich JE (1989) Oral hypoglycemic agents. N Engl J Med 321(18):1231–1245PubMedCrossRefGoogle Scholar
  24. 24.
    Hundal RS, Krssak M, Dufour S et al (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49(12):2063–2069PubMedCrossRefGoogle Scholar
  25. 25.
    Fonseca VA, Valiquett TR, Huang SM, Ghazzi MN, Whitcomb RW (1998) Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. The Troglitazone Study Group. J Clin Endocrinol Metab 83(9):3169–3176PubMedCrossRefGoogle Scholar
  26. 26.
    Petersen KF, Krssak M, Inzucchi S, Cline GW, Dufour S, Shulman GI (2000) Mechanism of troglitazone action in type 2 diabetes. Diabetes 49(5):827–831PubMedCrossRefGoogle Scholar
  27. 27.
    Mayerson AB, Hundal RS, Dufour S et al (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51(3):797–802PubMedCrossRefGoogle Scholar
  28. 28.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356(24):2457–2471PubMedCrossRefGoogle Scholar
  29. 29.
    Misbin RI (2007) Lessons from the Avandia controversy: a new paradigm for the development of drugs to treat type 2 diabetes. Diabetes Care 30(12):3141–3144PubMedCrossRefGoogle Scholar
  30. 30.
    Faich GA, Moseley RH (2001) Troglitazone (Rezulin) and hepatic injury. Pharmacoepidemiol Drug Saf 10(6):537–547PubMedCrossRefGoogle Scholar
  31. 31.
    Holst JJ, Vilsboll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297(1–2): 127–136PubMedCrossRefGoogle Scholar
  32. 32.
    Kim W, Egan JM (2008) The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60(4):470–512PubMedCrossRefGoogle Scholar
  33. 33.
    Abbatecola AM, Maggi S, Paolisso G (2008) New approaches to treating type 2 diabetes mellitus in the elderly: role of incretin therapies. Drugs Aging 25(11):913–925PubMedCrossRefGoogle Scholar
  34. 34.
    Choy M, Lam S (2007) Sitagliptin: a novel drug for the treatment of type 2 diabetes. Cardiol Rev 15(5):264–271PubMedCrossRefGoogle Scholar
  35. 35.
    Morley JE, Kaiser FE (1990) Unique aspects of diabetes mellitus in the elderly. Clin Geriatr Med 6(4):693–702PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Internal Medicine (Endocrinology)Yale University School of MedicineNew HavenUSA

Personalised recommendations