Advertisement

Circuit and System Level Single-Event Effects Modeling and Simulation

Chapter
Part of the Frontiers in Electronic Testing book series (FRET, volume 41)

Abstract

This chapter covers the behavior of complex circuits and systems in the presence of single-event effects, and the transformation of the related faults to errors and errors to functional failures. In addition, an overview of practical methods and techniques for single-event effects analysis is presented, attempting to help the reliability engineers to cope with the single-event rate constraints of modern designs.

Keywords

Clock Cycle Clock Period Soft Error Register Transfer Level Sequential Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    “SEU Induced Errors Observed in Microprocessor Systems”. Asenek, V., et al. 1998, IEEE Transactions on Nuclear Science, Vol. 45, No. 6, p. 2876.CrossRefGoogle Scholar
  2. 2.
    “Satellite Anomalies from Galactic Cosmic Rays”. Binder, D., Smith, E.C. and Holman, A.B. 1975, IEEE Transactions on Nuclear Science, Vols. NS-22, No. 6, pp. 2675–2680.CrossRefGoogle Scholar
  3. 3.
    “Single Event Upsets in Implantable Cardioverter Defibrillators”. Bradley, P.D. and Normand, E. 1998, IEEE Transactions on Nuclear Science, Vol. 45, No. 6, p. 2929.CrossRefGoogle Scholar
  4. 4.
    “Circuit Simulations of SEU and SET Disruptions by Means of an Empirical Model Built Thanks to a Set of 3D Mixed-Mode Device Simulation Responses”. Belhaddad, H., et al. 2006, RADECS2006.Google Scholar
  5. 5.
    “A New Approach for the Prediction of the Neutron-Induced SEU Rate”. Vial, C., et al. 1998, IEEE Transactions on Nuclear Science, Vol. 45, No. 6, p. 2915.CrossRefGoogle Scholar
  6. 6.
    “Simulation Technologies for Cosmic Ray Neutron-Induced Soft Errors: Models and Simulation Systems”. Tosaka, Y., et al. 1999, IEEE Transactions on Nuclear Science, Vol. 46, No. 3, p. 774.MathSciNetCrossRefGoogle Scholar
  7. 7.
    “Soft Error Modeling and Mitigation” Tahoori, M. 2005, EMC Presentation.Google Scholar
  8. 8.
    “Production and Propagation of Single-Event Transient in High-Speed Digital Logic ICs”. Dodd, P.E., et al. 2004, IEEE Transactions on Nuclear Science, Vol. 51, No. 6, pp. 3278–3284.CrossRefGoogle Scholar
  9. 9.
    “Single Event Transient Pulsewidth Measurements Using a Variable Temporal Latch Technique”. Eaton, P., et al. 2004, IEEE Transactions on Nuclear Science, Vol. 51, No. 6, pp. 3365–3369.CrossRefGoogle Scholar
  10. 10.
    “Single Event Transients in Deep Submicron CMOS”. Hass, K.J. and Gambles, J.W. 1999, IEEE 42nd Midwest Symposium on Circuits and Systems, pp. 122–125.Google Scholar
  11. 11.
    “Single Event Transient Pulsewidths in Digital Microcircuits”. Gadlage, M.J., et al. 2004, IEEE Transactions on Nuclear Science, Vol. 51, No. 6, pp. 3285–3290.CrossRefGoogle Scholar
  12. 12.
    “Measurement of Single Event Transient Pulse Width Induced by Ionizing Radiations in CMOS Combinational Logic”. Perez, R., et al. 2006, RADECS Proceedings.Google Scholar
  13. 13.
    “Contribution a la definition des specifications d’un outil d’aide a la conception automatique de systemes electroniques integres nanometriques robuste”. Doctoral Thesis, Perez, R. 2004.Google Scholar
  14. 14.
    “Measuring the Width of Transient Pulses Induced by Ionising Radiation”. Nicolaidis, M. and Perez, R. 2003, Proceedings of the International Reliability Physics Symposium, p. 56.Google Scholar
  15. 15.
    “Modeling and Verification of Single Event Transients in Deep Submicron Technologies”. Gadlage, M.J. Schrimpf, R.D. Benedetto, J.M. Eaton, P.H. Turflinger, T.L., Proceedings of IEEE International Reliability Physics Symposium Proceedings, 2004, pp. 673–674Google Scholar
  16. 16.
    “Modeling of Transients Caused by a Laser Attack on Smart Cards”, Leroy, D., Piestrak S.J., Monteiro F. and Dandache, A., Proc. IOLTS’05 – 12th IEEE Int. On-Line Testing Symposium, Saint Raphael, France, July 6–8, 2005.Google Scholar
  17. 17.
    “Synthetic Soft Error Rate Simulation Considering Neutron-Induced Single Event Transient from Transistor to LSI-Chip Level”. Hane, M., Nakamura, H., Uemura H., et al. 2008, Proc. of SISPAD, pp. 365–368.Google Scholar
  18. 18.
    “Study on Influence of Device Structure Dimensions and Profiles on Charge Collection Current Causing SET Pulse Leading to Soft Errors in Logic Circuits”. Tanaka, K., Nakamura, H., Uemura T., et al. 2009, Proc. of SISPAD.Google Scholar
  19. 19.
    “Single Event Effects in Static and Dynamic Registers in a 0.25 μm CMOS Technology”. Faccio, F., et al. 1999, IEEE Transactions on Nuclear Science, Vol. 46, No. 6, pp. 1434–1439.CrossRefGoogle Scholar
  20. 20.
    “SEU Testing of a Novel Hardened Register Implemented Using Standard CMOS Technology”. Monnier, T., et al. 1999, IEEE Transactions on Nuclear Science, Vol. 46, No. 6, p. 1440.MathSciNetCrossRefGoogle Scholar
  21. 21.
    “Detailed Analysis of Secondary Ions’ Effect for the Calculation of Neutron-Induced SER in SRAMs”, Hubert, G., et al. 2001, IEEE Transactions on Nuclear Science, Vol. 48, No. 6.Google Scholar
  22. 22.
    “SEU Response of an Entire SRAM Cell Simulated as one Contiguos Three Dimensional Device Domain”. Roche, Ph., et al. 1998, IEEE Transactions on Nuclear Science, Vol. 45, No. 6, p. 2534.CrossRefGoogle Scholar
  23. 23.
    “Determination of Key Parameters for SEU Occurrence using 3-D Full Cell SRAM Simulations”. Roche, Ph., et al. 1999, IEEE Transactions on Nuclear Science, Vol. 46, No. 6, p. 1354.CrossRefGoogle Scholar
  24. 24.
    “An Alpha Immune and Ultra Low Neutron SER High Density SRAM”. Roche, Ph., et al. 2004, Reliability Physics Symposium Proceedings, 42nd Annual, pp. 671–672.Google Scholar
  25. 25.
    “Process Impact on SRAM alpha-Particle SEU Performance”. Xu, Y.Z., et al. 2004, Proceedings of IRPS.Google Scholar
  26. 26.
    “Alpha-Particle-Induced Soft Errors In Dynamic Memories”. May, T.C. and Woods, M.H. 1979, IEEE Transactions on Electron Devices, Vols. ED-26, No. 1, p. 39487.Google Scholar
  27. 27.
    “Neutron Soft Error Rate Measurements in a 90-nm CMOS Process and Scaling Trends in SRAM from 0.25-μm to 90-nm Generation”. Hazucha, P., et al. 2003, Proceedings of IEDM.Google Scholar
  28. 28.
    “Soft Error Rate Increase for New Generations of SRAMs”. Granlund, T., Granbom, B. and Olsson, N. 2003, IEEE Transactions on Nuclear Science, Vol. 50, No. 6, pp. 2065–2069.CrossRefGoogle Scholar
  29. 29.
    “Neutron-Induced SEU in Bulk and SOI SRAMs in Terrestrial Environment”. Baggio, J., et al. 2004, Reliability Physics Symposium Proceedings, Vol. 42nd Annual, pp. 677–678.Google Scholar
  30. 30.
    “Low-Energy Neutron Sensitivity of Recent Generation SRAMs”. Armani, J.M., Simon, G. and Poirot, P. 2004, IEEE Transactions on Nuclear Science, Vol. 51, No. 5, pp. 2811–2816.CrossRefGoogle Scholar
  31. 31.
    “Single Event Effects in Avionics”. Normand, E., IEEE Transactions on Nuclear Science, 1996, Vol. 43, Issue 2, Part 1, pp. 461–474.CrossRefGoogle Scholar
  32. 32.
    “Single Event Upset at Ground Level”. Normand, E., IEEE Transactions on Nuclear Science, 1996, Vol. 43, Issue 6, Part 1, pp. 2742–2750.CrossRefGoogle Scholar
  33. 33.
    “SRAM SER in 90, 130 and 180 nm Bulk and SOI Technologies”. Cannon, Ethan H., et al. 2004, Proc. 42nd Int'l Reliability Physics Symp, p. 300.Google Scholar
  34. 34.
    “Characterization of Multi-Bit Soft Error Events in Advanced SRAMs”. Maiz, J. Hareland, S. Zhang, K. Armstrong, P., Proceedings of IEEE International Electron Devices Meeting 2003, pp. 21.4.1–21.4.4.Google Scholar
  35. 35.
    “Neutron Induced Single-word Multiple-bit Upset in SRAM”. Johansson, K., et al. 1999, IEEE Transactions on Nuclear Science, Vol. 46, No. 6, p. 1427.MathSciNetCrossRefGoogle Scholar
  36. 36.
    “Analysis of Local and Global Transient Effects in a CMOS SRAM”. Gardic, F., et al. 1996, IEEE Transactions on Nuclear Science, Vols. Vol. 43, No. 3, p. 899.CrossRefGoogle Scholar
  37. 37.
    “Large System Soft Error Rate (SER) Qualification”. Eagan, D.J., et al. 1992, Proceedings of Custom Integrated Circuits Conference, pp. 18.2.1–18.2.4.Google Scholar
  38. 38.
    “Simulating Single Event Transients in VDSM ICs for Ground Level Radiation”. Alexandrescu, D., Anghel, L. and Nicolaidis, M. 2004, Journal of Electronic Testing: Theory and Applications.Google Scholar
  39. 39.
    “Accurate and Efficient Analysis of Single Event Transients in VLSI Circuits”. Reorda, M.S. and Violante, M. 2003, Proceedings of the 9th IEEE International On-Line Testing Symposium.Google Scholar
  40. 40.
    “A Systematic Approach to SER Estimation and Solutions”. Nguyen, H.T. and Yagil, Y. 2003, Proceedings of the International Reliability Physics Symposium, pp. 60–70.Google Scholar
  41. 41.
    “Probabilistic Estimates of Upset Caused by Single Event Transients”. Hass, K.J. 1999, 8th NASA Symposium on VLSI Design, pp. 4.3.1–4.3.9.Google Scholar
  42. 42.
    “An Accurate SER Estimation Method Based on Propagation Probability”. Asadi, G. and Tahoori, M.B. 2005, Proceedings of Design, Automation and Test in Europe Conference.Google Scholar
  43. 43.
    “On Testability Analysis of Combinational Networks”. Brglez, F. 1984, Proceedings of IEEE Symposium on Circuits and Systems, pp. 221–225.Google Scholar
  44. 44.
    “A Model for Transient Fault Propagation in Combinatorial Logic”. Omana, M., et al. 2003, Proceedings of the 9th IEEE International On-Line Testing Symposium.Google Scholar
  45. 45.
    “High Performance Parallel Fault Simulation”. Varshney, A.K., et al. 2001, Proc. Intl. Conf. on Computer Design: VLSI in Computers & Processor (ICCD 01), Vols. 1063–6404/01.Google Scholar
  46. 46.
    “Data Parallel Fault Simulation”. Amin, M.B. and Vinnakota, B. 1995, Proc. Intl. Conf. on Computer Design: VLSI in Computers & Processor (ICCD 95), Vols. 1063-6404/95, pp. 610–616.Google Scholar
  47. 47.
    “Static Analysis of SEU Effects on Software Applications”. Benso, A., et al. 2002, Proceedings of the International Test Conference, pp. 500–508.Google Scholar
  48. 48.
    “HOPE: An Efficient Parallel Fault Simulator for Synchronous Sequential Circuits”. Lee, H. and Ha, D.S. 1996, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 15, No 9, pp. 1048–1058.CrossRefGoogle Scholar
  49. 49.
    “An Efficient, Forward Fault Simulation Algorithm Based on the Parallel Pattern Single Fault Propagation”. Lee, H. and Ha, D.S. 1991, Proc. the IEEE Intl. Test Conf. on Test: Faster Better, Sooner, pp. 946–955.Google Scholar
  50. 50.
    “Fault List Compaction Through Static Timing Analysis for Efficient Fault Injection Experiments”. Reorda, M.S. and Violante, M. 2002, IEEE Symp. on Defect and Fault Tolerancein VLSI Systems, pp. 263–271.Google Scholar
  51. 51.
    “Speeding-up Fault Injection Campaigns in VHDL models”. Parrotta, B., et al. 2000, 19th International Conference on Computer Safety, Reliability and Security, Safecomp, pp. 27–36.Google Scholar
  52. 52.
    “Emulation-based Fault Injection in Circuits with Embedded Memories”. García-Valderas, M., et al. 2006, Proceedings of IEEE International on Line Testing Symposium, Como Lake, Italy.Google Scholar
  53. 53.
    “An Extension of Transient Fault Emulation Techniques to Circuits with Embedded Memories”. García-Valderas, M., et al. 2006, DDECS.Google Scholar
  54. 54.
    “Fast Timing Simulation of Transient Fault in Digital Circuits”. Dharchoudhury, A. 1994, Proc. Intl. Conf. on Computer-Aided Design, pp. 719–726.Google Scholar
  55. 55.
    “Analog-Digital Simulation of Transient-Induced Logic Errors and Upset Susceptibility of an Advanced Control System”. Carreno, V., Choi, G. and Iyer, R.K. 1990, NASA Technical Memo.Google Scholar
  56. 56.
    “New Techniques for Speeding-up Fault-Injection Campaigns”. Berrojo, L. Gonzalez, I. Corno, F. Reorda, M.S. Squillero, G. Entrena, L. Lopez, C., Proceedings of IEEE Design, Automation and Test in Europe 2002, pp. 847–852.Google Scholar
  57. 57.
    “Design for Soft Error Resiliency in Internet Core Routers”, Silburt, A.L., Evans, A., Burghelea A., Wen, S.-J. and Alexandrescu, D., IEEE Transactions on Nuclear Science.Google Scholar
  58. 58.
    “A Multi-Partner Soft Error Rate Analysis of an InfiniBand Host Channel Adapter”, Chapman, H., Landman, E., Margarit-Illovich, A., Fang, Y.P., Oates, A.S., Alexandrescu, D. and Lauzeral, O., SELSE 2010.Google Scholar
  59. 59.
    “Complex Electronic Systems Soft Error Rate (SER) Management”, Alexandrescu, D., Wen, S.-J. and Nicolaidis, M., Special Session on Soft Errors in Electronic Systems, ETS 2009, http://www.iroctech.com/pdf/ALE_ETS_2009_Presentation.pdf.
  60. 60.
    “Evaluation of Soft Error Tolerance Technique Based on Time and/or Space Redundancy”. Anghel, L., Alexandrescu, D. and Nicolaidis, M. 2000, Proc. of 13th Symposium on Integrated Circuits and Systems Design, pp. 237–342.Google Scholar

Further Reading

  1. 61.
    “Radiation Effects on Microelectronics in Space”. Srour, J.R. and McGarrity, J.M. 1988, Proceedings of the IEEE, Vol. 76, No. 11, p. 1443.CrossRefGoogle Scholar
  2. 62.
    “Modeling the Cosmic-Ray-Induced Soft-Error Rate in Integrated Circuits: An Overview”. Srinivasan, G.R. 1996, IBM Journal of Research and Development, Vol. 40, No. 1, p. 77.CrossRefGoogle Scholar
  3. 63.
    “The Design of Radiation-Hardened ICs for Space: A Compendium of Approaches”. Kerns, S.E. and Shafer, B.D. 1988, Proceedings of the IEEE, Vol. 76, No. 11, p. 1470.CrossRefGoogle Scholar
  4. 64.
    “Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational Logic”. Shivakumar, P., et al. 2002, Proceedings of the International Conference on Dependable Systems and Networks, p. 389–398.Google Scholar
  5. 65.
    “Contribution of Device Simulation to SER Understanding”. Palau, J.-M., et al. 2003, Proceedings of the International Reliability Physics Symposium, pp. 184–189.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.VP Engineering, Board Member iRoC Technologies, WTCGrenobleFrance

Personalised recommendations