Beyond totally reflexive modules and back

A survey on gorenstein dimensions
  • Lars Winther Christensen
  • Hans-Bjørn Foxby
  • Henrik Holm


Starting from the notion of totally reflexive modules, we survey the theory of Gorenstein homological dimensions for modules over commutative rings. The account includes the theory’s connections with relative homological algebra and with studies of local ring homomorphisms. It ends close to the starting point: with a characterization of Gorenstein rings in terms of total acyclicity of complexes.


Local Ring Projective Dimension Noetherian Ring Homological Dimension Dualizing Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldrich, S.T., Enochs, E.E., López-Ramos, J.A.: Derived functors of Hom relative to flat covers. Math. Nachr. 242, 17–26 (2002)MATHMathSciNetGoogle Scholar
  2. 2.
    André, M.: Homologie des algèbres commutatives. Die Grundlehren der mathematischen Wissenschaften, Band 206. Springer, Berlin (1974)Google Scholar
  3. 3.
    Asadollahi, J., Salarian, S.: Cohomology theories based on Gorenstein injective modules. Trans. Am. Math. Soc. 358, 2183–2203 (2006)MATHMathSciNetGoogle Scholar
  4. 4.
    Asadollahi, J., Salarian, S.: Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings. Comm. Algebra 34, 3009–3022 (2006)MATHMathSciNetGoogle Scholar
  5. 5.
    Auslander, M.: Anneaux de Gorenstein, et torsion en algèbre commutative. Secrétariat mathématique, Paris (1967). Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d’après des exposés de Maurice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles. Available from
  6. 6.
    Auslander, M., Bridger, M.: Stable module theory. Memoirs of the American Mathematical Society, no. 94. American Mathematical Society, Providence, R.I. (1969)Google Scholar
  7. 7.
    Auslander, M., Buchsbaum, D.A.: Homological dimension in Noetherian rings. Proc. Nat. Acad. Sci. U.S.A. 42, 36–38 (1956)MATHMathSciNetGoogle Scholar
  8. 8.
    Auslander, M., Buchsbaum, D.A.: Homological dimension in local rings. Trans. Am. Math. Soc. 85, 390–405 (1957)MATHMathSciNetGoogle Scholar
  9. 9.
    Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. France (N.S.) (38), 5–37 (1989). Colloque en l’honneur de Pierre Samuel (Orsay, 1987)Google Scholar
  10. 10.
    Avramov, L.L.: Homological dimensions and related invariants of modules over local rings. In: Representations of algebra. Vol. I, II, pp. 1–39. Beijing Norm. Univ. Press, Beijing (2002)Google Scholar
  11. 11.
    Avramov, L.L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71, 129–155 (1991)MATHMathSciNetGoogle Scholar
  12. 12.
    Avramov, L.L., Foxby, H.-B.: Locally Gorenstein homomorphisms. Am. J. Math. 114, 1007–1047 (1992)MATHMathSciNetGoogle Scholar
  13. 13.
    Avramov, L.L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. London Math. Soc. (3) 75, 241–270 (1997)MATHMathSciNetGoogle Scholar
  14. 14.
    Avramov, L.L., Foxby, H.-B.: Cohen–Macaulay properties of ring homomorphisms. Adv. Math. 133, 54–95 (1998)MATHMathSciNetGoogle Scholar
  15. 15.
    Avramov, L.L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms. J. Algebra 164, 124–145 (1994)MATHMathSciNetGoogle Scholar
  16. 16.
    Avramov, L.L., Gasharov, V.N., Peeva, I.V.: Complete intersection dimension. Inst. Hautes Études Sci. Publ. Math. (86), 67–114 (1998) (1997)Google Scholar
  17. 17.
    Avramov, L.L., Iyengar, S., Miller, C.: Homology over local homomorphisms. Am. J. Math. 128, 23–90 (2006)MATHMathSciNetGoogle Scholar
  18. 18.
    Avramov, L.L., Iyengar, S.B., Lipman, J.: Reflexivity and rigidity for complexes I. Commutative rings. Algebra Number Theory 4, 47–86 (2010)MATHMathSciNetGoogle Scholar
  19. 19.
    Avramov, L.L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc. 85(3), 393–440 (2002)MATHMathSciNetGoogle Scholar
  20. 20.
    Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)MATHMathSciNetGoogle Scholar
  21. 21.
    Bass, H., Murthy, M.P.: Grothendieck groups and Picard groups of abelian group rings. Ann. of Math. 86(2), 16–73 (1967)MathSciNetGoogle Scholar
  22. 22.
    Beligiannis, A., Krause, H.: Thick subcategories and virtually Gorenstein algebras. Ill. J. Math. 52, 551–562 (2008)MathSciNetGoogle Scholar
  23. 23.
    Bennis, D.: A note on Gorenstein flat dimension. To appear in Algebra Colloq., preprint (2008)
  24. 24.
    Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210, 437–445 (2007)MATHMathSciNetGoogle Scholar
  25. 25.
    Bennis, D., Mahdou, N., Ouarghi, K.: Rings over which all modules are strongly Gorenstein projective. Rocky Mountain J. Math. 40, 749–759 (2010)MATHMathSciNetGoogle Scholar
  26. 26.
    Bican, L., El Bashir, R., Enochs, E.E.: All modules have flat covers. Bull. London Math. Soc. 33, 385–390 (2001)MATHMathSciNetGoogle Scholar
  27. 27.
    Chouinard II, L.G.: On finite weak and injective dimension. Proc. Am. Math. Soc. 60, 57–60 (1977) (1976)Google Scholar
  28. 28.
    Christensen, L.W.: Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747. Springer, Berlin (2000)Google Scholar
  29. 29.
    Christensen, L.W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353, 1839–1883 (2001)MATHGoogle Scholar
  30. 30.
    Christensen, L.W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions and Cohen-Macaulayness. J. Algebra 251, 479–502 (2002)MATHMathSciNetGoogle Scholar
  31. 31.
    Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions – A functorial description with applications. J. Algebra 302, 231–279 (2006)MATHMathSciNetGoogle Scholar
  32. 32.
    Christensen, L.W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61, 76–108 (2009)MATHMathSciNetGoogle Scholar
  33. 33.
    Christensen, L.W., Iyengar, S.: Gorenstein dimension of modules over homomorphisms. J. Pure Appl. Algebra 208, 177–188 (2007)MATHMathSciNetGoogle Scholar
  34. 34.
    Christensen, L.W., Piepmeyer, G., Striuli, J., Takahashi, R.: Finite Gorenstein representation type implies simple singularity. Adv. Math. 218, 1012–1026 (2008)MATHMathSciNetGoogle Scholar
  35. 35.
    Christensen, L.W., Sather-Wagstaff, S.: Transfer of Gorenstein dimensions along ring homomorphisms. J. Pure Appl. Algebra 214, 982–989 (2010)MATHMathSciNetGoogle Scholar
  36. 36.
    Christensen, L.W., Veliche, O.: Acyclicity over local rings with radical cube zero. Ill. J. Math. 51, 1439–1454 (2007)MATHMathSciNetGoogle Scholar
  37. 37.
    Christensen, L.W., Veliche, O.: A test complex for Gorensteinness. Proc. Am. Math. Soc. 136, 479–487 (2008)MATHMathSciNetGoogle Scholar
  38. 38.
    Ding, N., Li, Y., Mao, L.: Strongly Gorenstein flat modules. J. Aust. Math. Soc. 86, 323–338 (2009)MATHMathSciNetGoogle Scholar
  39. 39.
    Enochs, E.E.: Injective and flat covers, envelopes and resolvents. Israel J. Math. 39, 189–209 (1981)MATHMathSciNetGoogle Scholar
  40. 40.
    Enochs, E.E., Jenda, O.M.G.: Balanced functors applied to modules. J. Algebra 92, 303–310 (1985)MATHMathSciNetGoogle Scholar
  41. 41.
    Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220, 611–633 (1995)MATHMathSciNetGoogle Scholar
  42. 42.
    Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and flat dimensions. Math. Japon. 44, 261–268 (1996)MATHMathSciNetGoogle Scholar
  43. 43.
    Enochs, E.E., Jenda, O.M.G.: Relative homological algebra, de Gruyter Expositions in Mathematics, vol. 30. Walter de Gruyter & Co., Berlin (2000)Google Scholar
  44. 44.
    Enochs, E.E., Jenda, O.M.G.: Ω-Gorenstein projective and flat covers and Ω-Gorenstein injective envelopes. Comm. Algebra 32, 1453–1470 (2004)MATHMathSciNetGoogle Scholar
  45. 45.
    Enochs, E.E., Jenda, O.M.G.: Gorenstein and Ω-Gorenstein injective covers and flat preenvelopes. Comm. Algebra 33, 507–518 (2005)MATHMathSciNetGoogle Scholar
  46. 46.
    Enochs, E.E., Jenda, O.M.G., López-Ramos, J.A.: The existence of Gorenstein flat covers. Math. Scand. 94, 46–62 (2004)MATHMathSciNetGoogle Scholar
  47. 47.
    Enochs, E.E., Jenda, O.M.G., Torrecillas, B.: Gorenstein flat modules. Nanjing Daxue Xuebao Shuxue Bannian Kan 10, 1–9 (1993)MATHMathSciNetGoogle Scholar
  48. 48.
    Enochs, E.E., Jenda, O.M.G., Xu, J.: Covers and envelopes over Gorenstein rings. Tsukuba J. Math. 20, 487–503 (1996)MATHMathSciNetGoogle Scholar
  49. 49.
    Enochs, E.E., Jenda, O.M.G., Xu, J.: Foxby duality and Gorenstein injective and projective modules. Trans. Am. Math. Soc. 348, 3223–3234 (1996)MATHMathSciNetGoogle Scholar
  50. 50.
    Enochs, E.E., Jenda, O.M.G., Xu, J.: A generalization of Auslander’s last theorem. Algebr. Represent. Theory 2, 259–268 (1999)MATHMathSciNetGoogle Scholar
  51. 51.
    Enochs, E.E., López-Ramos, J.A.: Kaplansky classes. Rend. Sem. Mat. Univ. Padova 107, 67–79 (2002)MATHMathSciNetGoogle Scholar
  52. 52.
    Esmkhani, M.A., Tousi, M.: Gorenstein homological dimensions and Auslander categories. J. Algebra 308, 321–329 (2007)MATHMathSciNetGoogle Scholar
  53. 53.
    Esmkhani, M.A., Tousi, M.: Gorenstein injective modules and Auslander categories. Arch. Math. (Basel) 89, 114–123 (2007)MATHMathSciNetGoogle Scholar
  54. 54.
    Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31, 267–284 (1972)MathSciNetGoogle Scholar
  55. 55.
    Foxby, H.-B.: Quasi-perfect modules over Cohen-Macaulay rings. Math. Nachr. 66, 103–110 (1975)MATHMathSciNetGoogle Scholar
  56. 56.
    Foxby, H.-B.: Isomorphisms between complexes with applications to the homological theory of modules. Math. Scand. 40, 5–19 (1977)MATHMathSciNetGoogle Scholar
  57. 57.
    Foxby, H.-B.: Gorenstein dimension over Cohen-Macaulay rings. In: W. Bruns (ed.) Proceedings of international conference on commutative algebra. Universität Osnabrück (1994)Google Scholar
  58. 58.
    Foxby, H.-B., Frankild, A.J.: Cyclic modules of finite Gorenstein injective dimension and Gorenstein rings. Ill. J. Math. 51, 67–82 (2007)MATHMathSciNetGoogle Scholar
  59. 59.
    Frankild, A.: Quasi Cohen–Macaulay properties of local homomorphisms. J. Algebra 235, 214–242 (2001)MATHMathSciNetGoogle Scholar
  60. 60.
    Frankild, A., Sather-Wagstaff, S.: Reflexivity and ring homomorphisms of finite flat dimension. Comm. Algebra 35, 461–500 (2007)MATHMathSciNetGoogle Scholar
  61. 61.
    Gerko, A.A.: On homological dimensions. Mat. Sb. 192, 79–94 (2001)MathSciNetGoogle Scholar
  62. 62.
    Golod, E.S.: G-dimension and generalized perfect ideals. Trudy Mat. Inst. Steklov. 165, 62–66 (1984). Algebraic geometry and its applicationsMATHMathSciNetGoogle Scholar
  63. 63.
    Goto, S.: Vanishing of ExtA i(M, A). J. Math. Kyoto Univ. 22, 481–484 (1982)MATHMathSciNetGoogle Scholar
  64. 64.
    Govorov, V.E.: On flat modules. Sibirsk. Mat. Ž. 6, 300–304 (1965)MATHMathSciNetGoogle Scholar
  65. 65.
    Holm, H.: Gorenstein derived functors. Proc. Am. Math. Soc. 132, 1913–1923 (2004)MATHMathSciNetGoogle Scholar
  66. 66.
    Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189, 167–193 (2004)MATHMathSciNetGoogle Scholar
  67. 67.
    Holm, H.: Rings with finite Gorenstein injective dimension. Proc. Am. Math. Soc. 132, 1279–1283 (2004)MATHMathSciNetGoogle Scholar
  68. 68.
    Holm, H.: Relative Ext groups, resolutions, and Schanuel classes. Osaka J. Math. 45, 719–735 (2008)MATHMathSciNetGoogle Scholar
  69. 69.
    Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205, 423–445 (2006)MATHMathSciNetGoogle Scholar
  70. 70.
    Holm, H., Jørgensen, P.: Cohen-Macaulay homological dimensions. Rend. Semin. Mat. Univ. Padova 117, 87–112 (2007)MATHMathSciNetGoogle Scholar
  71. 71.
    Holm, H., Jørgensen, P.: Rings without a Gorenstein analogue of the Govorov-Lazard theorem. To appear in Q. J. Math., published online July 2010, doi 10.1093/qmath/haq023. Preprint (2008)
  72. 72.
    Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commut. Algebra 1, 621–633 (2009)MATHMathSciNetGoogle Scholar
  73. 73.
    Hummel, L., Marley, T.: The Auslander-Bridger formula and the Gorenstein property for coherent rings. J. Commut. Algebra 1, 283–314 (2009)MATHMathSciNetGoogle Scholar
  74. 74.
    Iacob, A.: Absolute, Gorenstein, and Tate torsion modules. Comm. Algebra 35, 1589–1606 (2007)MATHMathSciNetGoogle Scholar
  75. 75.
    Iyengar, S., Krause, H.: Acyclicity versus total acyclicity for complexes over Noetherian rings. Doc. Math. 11, 207–240 (2006)MATHMathSciNetGoogle Scholar
  76. 76.
    Iyengar, S., Sather-Wagstaff, S.: G-dimension over local homomorphisms. Applications to the Frobenius endomorphism. Ill. J. Math. 48, 241–272 (2004)MATHMathSciNetGoogle Scholar
  77. 77.
    Jorgensen, D.A., Şega, L.M.: Independence of the total reflexivity conditions for modules. Algebr. Represent. Theory 9, 217–226 (2006)MATHMathSciNetGoogle Scholar
  78. 78.
    Jørgensen, P.: Existence of Gorenstein projective resolutions and Tate cohomology. J. Eur. Math. Soc. (JEMS) 9, 59–76 (2007)MathSciNetGoogle Scholar
  79. 79.
    Kawasaki, T.: On arithmetic Macaulayfication of Noetherian rings. Trans. Am. Math. Soc. 354, 123–149 (2002)MATHMathSciNetGoogle Scholar
  80. 80.
    Khatami, L., Tousi, M., Yassemi, S.: Finiteness of Gorenstein injective dimension of modules. Proc. Am. Math. Soc. 137, 2201–2207 (2009)MATHMathSciNetGoogle Scholar
  81. 81.
    Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141, 1128–1162 (2005)MATHMathSciNetGoogle Scholar
  82. 82.
    Kunz, E.: Characterizations of regular local rings for characteristic p. Am. J. Math. 91, 772–784 (1969)MATHMathSciNetGoogle Scholar
  83. 83.
    Lazard, D.: Autour de la platitude. Bull. Soc. Math. France 97, 81–128 (1969)MATHMathSciNetGoogle Scholar
  84. 84.
    Maşek, V.: Gorenstein dimension and torsion of modules over commutative Noetherian rings. Comm. Algebra 28, 5783–5811 (2000)MATHMathSciNetGoogle Scholar
  85. 85.
    Murfet, D., Salarian, S.: Totally acyclic complexes over Noetherian schemes. Preprint (2009)
  86. 86.
    Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck. Inst. Hautes Études Sci. Publ. Math. (42), 47–119 (1973)MathSciNetGoogle Scholar
  87. 87.
    Roberts, P.: Le théorème d’intersection. C. R. Acad. Sci. Paris Sér. I Math. 304, 177–180 (1987)MATHGoogle Scholar
  88. 88.
    Roberts, P.C.: Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics, vol. 133. Cambridge University Press, Cambridge (1998)Google Scholar
  89. 89.
    Rodicio, A.G.: On a result of Avramov. Manuscripta Math. 62, 181–185 (1988)MATHMathSciNetGoogle Scholar
  90. 90.
    Sahandi, P., Sharif, T.: Dual of the Auslander-Bridger formula and GF-perfectness. Math. Scand. 101, 5–18 (2007)MATHMathSciNetGoogle Scholar
  91. 91.
    Salarian, S., Sather-Wagstaff, S., Yassemi, S.: Characterizing local rings via homological dimensions and regular sequences. J. Pure Appl. Algebra 207, 99–108 (2006)MATHMathSciNetGoogle Scholar
  92. 92.
    Sather-Wagstaff, S.: Complete intersection dimensions and Foxby classes. J. Pure Appl. Algebra 212, 2594–2611 (2008)MATHMathSciNetGoogle Scholar
  93. 93.
    Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z. 264, 571–600 (2010)MATHMathSciNetGoogle Scholar
  94. 94.
    Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc. (2) 77, 481–502 (2008)MATHMathSciNetGoogle Scholar
  95. 95.
    Sather-Wagstaff, S., White, D.: An Euler characteristic for modules of finite G-dimension. Math. Scand. 102, 206–230 (2008)MATHMathSciNetGoogle Scholar
  96. 96.
    Sazeedeh, R.: Gorenstein injective modules and local cohomology. Proc. Am. Math. Soc. 132, 2885–2891 (2004)MATHMathSciNetGoogle Scholar
  97. 97.
    Sazeedeh, R.: Gorenstein injective, Gorenstein flat modules and the section functor. J. Pure Appl. Algebra 211, 773–783 (2007)MATHMathSciNetGoogle Scholar
  98. 98.
    Serre, J.P.: Sur la dimension homologique des anneaux et des modules noethériens. In: Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, pp. 175–189. Science Council of Japan, Tokyo (1956)Google Scholar
  99. 99.
    Shamash, J.: The Poincaré series of a local ring. J. Algebra 12, 453–470 (1969)MATHMathSciNetGoogle Scholar
  100. 100.
    Sharp, R.Y.: Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings. Proc. London Math. Soc. (3) 25, 303–328 (1972)MATHMathSciNetGoogle Scholar
  101. 101.
    Takahashi, R.: Some characterizations of Gorenstein local rings in terms of G-dimension. Acta Math. Hungar. 104, 315–322 (2004)MATHMathSciNetGoogle Scholar
  102. 102.
    Takahashi, R.: On the category of modules of Gorenstein dimension zero. Math. Z. 251, 249–256 (2005)MATHMathSciNetGoogle Scholar
  103. 103.
    Takahashi, R.: The existence of finitely generated modules of finite Gorenstein injective dimension. Proc. Am. Math. Soc. 134, 3115–3121 (2006)MATHGoogle Scholar
  104. 104.
    Takahashi, R.: Remarks on modules approximated by G-projective modules. J. Algebra 301, 748–780 (2006)MATHMathSciNetGoogle Scholar
  105. 105.
    Takahashi, R.: On G-regular local rings. Comm. Algebra 36, 4472–4491 (2008)MATHMathSciNetGoogle Scholar
  106. 106.
    Takahashi, R., Watanabe, K.i.: Totally reflexive modules constructed from smooth projective curves of genus g ≥ 2. Arch. Math. (Basel) 89, 60–67 (2007)MATHMathSciNetGoogle Scholar
  107. 107.
    Takahashi, R., Yoshino, Y.: Characterizing Cohen-Macaulay local rings by Frobenius maps. Proc. Am. Math. Soc. 132, 3177–3187 (2004)MATHMathSciNetGoogle Scholar
  108. 108.
    Vasconcelos, W.V.: Divisor theory in module categories. North-Holland Mathematics Studies, no. 14, Notas de Matemática no. 53. [Notes on Mathematics, no. 53] North-Holland, Amsterdam (1974)Google Scholar
  109. 109.
    Veliche, O.: Construction of modules with finite homological dimensions. J. Algebra 250, 427–449 (2002)MATHMathSciNetGoogle Scholar
  110. 110.
    Veliche, O.: Gorenstein projective dimension for complexes. Trans. Am. Math. Soc. 358, 1257–1283 (2006)MATHMathSciNetGoogle Scholar
  111. 111.
    Weibel, C.A.: An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)Google Scholar
  112. 112.
    White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra 2, 111–137 (2010)MathSciNetGoogle Scholar
  113. 113.
    Xu, J.: Flat covers of modules, Lecture Notes in Mathematics, vol. 1634. Springer, Berlin (1996)Google Scholar
  114. 114.
    Yassemi, S.: G-dimension. Math. Scand. 77, 161–174 (1995)MATHMathSciNetGoogle Scholar
  115. 115.
    Yassemi, S.: A generalization of a theorem of Bass. Comm. Algebra 35, 249–251 (2007)MATHMathSciNetGoogle Scholar
  116. 116.
    Yoshino, Y.: Modules of G-dimension zero over local rings with the cube of maximal ideal being zero. In: Commutative algebra, singularities and computer algebra (Sinaia, 2002), NATO Sci. Ser. II Math. Phys. Chem., vol. 115, pp. 255–273. Kluwer, Dordrecht (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lars Winther Christensen
    • 1
  • Hans-Bjørn Foxby
    • 2
  • Henrik Holm
    • 3
  1. 1.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA
  2. 2.Department of Mathematical SciencesUniversity of CopenhagenKøbenhavn ØDenmark
  3. 3.Department of Basic Sciences and EnvironmentUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations