Class semigroups and t-class semigroups of integral domains

  • Silvana Bazzoni
  • Salah-Eddine Kabbaj


The class (resp., t-class) semigroup of an integral domain is the semigroup of the isomorphy classes of the nonzero fractional ideals (resp., t-ideals) with the operation induced by ideal (t-) multiplication. This paper surveys recent literature which studies ring-theoretic conditions that reflect reciprocally in the Clifford property of the class (resp., t-class) semigroup. Precisely, it examines integral domains with Clifford class (resp., t-class) semigroup and describes their idempotent elements and the structure of their associated constituent groups.


Prime Ideal Integral Domain Stable Domain Endomorphism Ring Regular Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D.D., Huckaba, J.A., Papick, I.J.: A note on stable domains. Houst. J. Math. 13(1), 13–17 (1987)MATHMathSciNetGoogle Scholar
  2. 2.
    Anderson, D.F., Houston, E., Zafrullah, M.: Pseudo-integrality. Can. Math. Bull. 34(1), 15–22 (1991)MATHMathSciNetGoogle Scholar
  3. 3.
    Barucci, V.: Mori domains, in “Non-Noetherian Commutative Ring Theory,” Math. Appl., Kluwer 520, 57–73 (2000)MathSciNetGoogle Scholar
  4. 4.
    Barucci, V., Houston, E.: On the prime spectrum of a Mori domain. Comm. Algebra 24(11), 3599–3622 (1996)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bazzoni, S.: Class semigroups of Prüfer domains. J. Algebra 184, 613–631 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bazzoni, S.: Idempotents of the class semigroups of Prüfer domains of finite character, Abelian groups, Module Theory, Topology, Lecture Notes M. Dekker, pp. 79–89 (1998)Google Scholar
  7. 7.
    Bazzoni, S.: Groups in the class semigroups of Prüfer domains of finite character. Comm. Algebra 28(11), 5157–5167 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bazzoni, S.: Clifford regular domains. J. Algebra 238, 703–722 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bazzoni, S., Salce, L.: Groups in the class semigroups of valuation domains. Israel J. Math. 95, 135–155 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bazzoni, S., Salce, L.: Warfield domains. J. Algebra 185, 836–868 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bourbaki, N.: Commutative Algebra. Springer, Berlin (1989)MATHGoogle Scholar
  12. 12.
    Bouvier, A.: Le groupe des classes dun anneau intègre, in “107-ème Congrés des Sociétés Savantes.” Brest 4, 85–92 (1982)Google Scholar
  13. 13.
    Bouvier, A., Zafrullah, M.: On some class groups of an integral domain. Bull. Soc. Math. Grèce 29, 45–59 (1988)MATHMathSciNetGoogle Scholar
  14. 14.
    Brewer, J., Klinger, L.: The ordered group of invertible ideals of a ¶domain of finite character. Comm. Algebra 33(11), 4197–4203 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Chang, G.W., Zafrullah, M.: The w-integral closure of integral domains. J. Algebra 295, 195–210 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Clifford, A., Preston, G.: Algebraic Theory of Semigroups, vol. 1. Mathematical Surveys AMS, Providence (1961)MATHGoogle Scholar
  17. 17.
    Conrad, P.: Some structure theorems for lattice-ordered groups. Trans. Am. Math. Soc. 99(2), 212–240 (1961)MATHMathSciNetGoogle Scholar
  18. 18.
    Dade, E., Taussky, O., Zassenhaus, H.: On the theory of orders, in particular on the semigroup of ideal classes and genera on an order in algebraic number field. Math. Ann. 148, 31–64 (1962)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dobbs, D.E., Fedder, R.: Conducive integral domains. J. Algebra 86, 494–510 (1984)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Dobbs, D.E., Houston, E., Lucas, T., Zafrullah, M.: t-Linked overrings and Prüfer v-multiplication domains. Comm. Algebra 17(11), 2835–2852 (1989)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Dobbs, D.E., Papick, I.J.: When is D + M coherent?. Proc. Am. Math. Soc. 56, 51–54 (1976)MATHMathSciNetGoogle Scholar
  22. 22.
    El Baghdadi, S.: On a class of Prüfer v-multiplication domains. Comm. Algebra 30, 3723–3742 (2002)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fangui, W., McCasland, R.L.: On strong Mori domains. J. Pure Appl. Algebra 135, 155–165 (1999)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Ferrand, D., Raynaud, M.: Fibres formelles d’un anneau local Noétherien. Ann. Scient. Éc. Norm. Sup. 3, 295–311 (1970)MATHMathSciNetGoogle Scholar
  25. 25.
    Fontana, M., Gabelli, S.: On the class group and local class group of a pullback. J. Algebra 181, 803–835 (1996)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Fontana, M., Huckaba, J.A., Papick, I.J.: Prüfer Domains, Monographs and Textbooks in Pure and Applied Mathematics, vol. 203. Marcel Dekker, Inc., New York (1997)Google Scholar
  27. 27.
    Fontana, M., Popescu, N.: Sur une classe d’anneaux qui généralisent les anneaux de Dedekind. J. Algebra 173, 44–66 (1995)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Fuchs, L.: On the class semigroups of ¶domains, Abelian groups and modules, pp. 319–326. Trends in Mathematics, Birkhuser, Basel (1999)Google Scholar
  29. 29.
    Fuchs, L., Salce, L.: Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001)MATHGoogle Scholar
  30. 30.
    Gabelli, S., Houston, E., Picozza, G.: w-Divisoriality in polynomial rings. Comm. Algebra 37(3), 1117–1127 (2009)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Griffin, M.: Rings of Krull type. J. Reine Angew. Math. 229, 1–27 (1968)MATHMathSciNetGoogle Scholar
  32. 32.
    Griffin, M.: Some results on v-multiplication rings. Can. J. Math. 19, 710–722 (1967)MATHMathSciNetGoogle Scholar
  33. 33.
    Halter-Koch, F.: Ideal systems. An introduction to multiplicative ideal theory. Marcel Dekker (1998)Google Scholar
  34. 34.
    Halter-Koch, F.: Ideal semigroups of Noetherian domains and Ponizovski decompositions. J. Pure Appl. Algebra. 209, 763–770 (2007)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Halter-Koch, F.: Clifford semigroups of ideals in monoids and domains. Forum Math. 21, 1001–1020 (2009)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Holland, W.C., Martinez, J., McGovern, W.Wm., Tesemma, M.: Bazzoni’s conjecture. J. Algebra 320(4), 1764–1768 (2008)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Jaffard, P.: Les Systèmes d’Idéaux, Travaux et Recherches Mathématiques, IV, Dunod, Paris (1960)MATHGoogle Scholar
  38. 38.
    Kabbaj, S., Mimouni, A.: Class semigroups of integral domains. J. Algebra 264, 620–640 (2003)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Kabbaj, S., Mimouni, A.: Corrigendum to “Class semigroups of integral domains” [J. Algebra 264, 620–640 (2003)]. J. Algebra 320, 1769–1770 (2008)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Kabbaj, S., Mimouni, A.: t-Class semigroups of integral domains. J. Reine Angew. Math. 612, 213–229 (2007)MATHMathSciNetGoogle Scholar
  41. 41.
    Kabbaj, S., Mimouni, A.: Constituent groups of Clifford semigroups arising from t-closure. J. Algebra 321, 1443-1452 (2009)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Kabbaj, S., Mimouni, A.: t-Class semigroups of Noetherian domains, in “Commutative Algebra and its Applications,” pp. 283–290. Walter de Gruyter, Berlin (2009)Google Scholar
  43. 43.
    Kang, B.G.: ⋆ -Operations in Integral Domains. Ph.D. thesis, The University of Iowa, Iowa City (1987)Google Scholar
  44. 44.
    Kang, B.G.: Prüfer v-multiplication domains and the ring \(R{[X]}_{{N}_{v}}\). J. Algebra 123, 151–170 (1989)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Kwak, D.J., Park, Y.S.: On t-flat overrings. Chin. J. Math. 23(1), 17–24 (1995)MATHMathSciNetGoogle Scholar
  46. 46.
    Lipman, J.: Stable ideals and Arf rings. Am. J. Math. 93, 649–685 (1971)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    McGovern, W.Wm.: Prüfer domains with Clifford class semigroup. J. Comm. Algebra to appearGoogle Scholar
  48. 48.
    Mimouni, A.: TW-domains and strong Mori domains. J. Pure Appl. Algebra 177, 79–93 (2003)MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Olberding, B.: Globalizing local properties. J. Algebra 205, 480–504 (1998)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Olberding, B.: On the classification of stable domains. J. Algebra 243, 177–197 (2001)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Olberding, B.: On the Structure of stable domains. Comm. Algebra 30(2), 877–895 (2002)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Rush, D.: Two-generated ideals and representations of Abelian groups over valuation rings. J. Algebra 177, 77–101 (1995)MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Sally, J., Vasconcelos, W.: Stable rings and a problem of Bass. Bull. Am. Math. Soc. 79, 574–576 (1973)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Sally, J., Vasconcelos, W.: Stable rings. J. Pure Appl. Algebra 4, 319–336 (1974)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Samuel, P.: On unique factorization domains. Ill. J. Math. 5, 1–17 (1961)MATHMathSciNetGoogle Scholar
  56. 56.
    Şega, L.: Ideal class semigroups of overrings. J. Algebra 311(2), 702–713 (2007)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Zafrullah, M.: On generalized Dedekind domains. Mathematika 33(2), 285–295 (1986)MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Zanardo, P.: The class semigroup of local one-dimensional domains. J. Pure Appl. Algebra 212, 2259–2270 (2008)MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Zanardo, P., Zannier, U.: The class semigroup of orders in number fields. Math. Proc. Camb. Phil. Soc. 115, 379–391 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaPadovaItaly
  2. 2.Department of Mathematics and StatisticsKFUPMDhahranSaudi Arabia

Personalised recommendations