Advertisement

Zero-divisor graphs in commutative rings

  • David F. Anderson
  • Michael C. Axtell
  • Joe A. SticklesJr.
Chapter

Abstract

This article surveys the recent and active area of zero-divisor graphs of commutative rings. Notable algebraic and graphical results are given, followed by a historical overview and an extensive bibliography.

Keywords

Prime Ideal Local Ring Commutative Ring Integral Domain Chromatic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbari, S., Bidkhori, H., Mohammadian, A.: Commuting graphs of matrix algebras. Comm. Algebra 36(11), 4020–4031 (2008)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Akbari, S., Ghandehari, M., Hadian, M., Mohammadian, A.: On commuting graphs of semisimple rings. Linear Algebra Appl. 390, 345–355 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Akbari, S., Maimani, H.R., Yassemi, S.: When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270(1), 169–180 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Akbari, S., Mohammadian, A.: On the zero-divisor graph of a commutative ring. J. Algebra 274(2), 847–855 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Akbari, S., Mohammadian, A.: Zero-divisor graphs of non-commutative rings. J. Algebra 296(2), 462–479 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Akbari, S., Mohammadian, A.: On zero-divisor graphs of finite rings. J. Algebra 314(1), 168–184 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Akhtar, R., Lee, L.: Homology of zero-divisors. Rocky Mt. J. Math. 37(4), 1105–1126 (2007)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Anderson, D.D., Naseer, M.: Beck’s coloring of a commutative ring. J. Algebra 159(2), 500–514 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Anderson, D.F.: On the diameter and girth of a zero-divisor graph, II. Houst. J. Math. 34(2), 361–371 (2008)MATHGoogle Scholar
  10. 10.
    Anderson, D.F., Badawi, A.: On the zero-divisor graph of a ring. Comm. Algebra 36(8), 3073–3092 (2008)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Anderson, D.F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320(7), 2706–2719 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Anderson, D.F., Frazier, A., Lauve, A., Livingston, P.S.: The zero-divisor graph of a commutative ring, II. Lect. Notes Pure Appl. Math. 220, 61–72 (2001)MathSciNetGoogle Scholar
  13. 13.
    Anderson, D.F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180(3), 221–241 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217(2), 434–447 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Anderson, D.F., Mulay, S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210(2), 543–550 (2007)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Atiyah, M.F., MacDonald, I.G.: “Introduction to Commutative Algebra”. Perseus Book, Cambridge, Massachusetts (1969)MATHGoogle Scholar
  17. 17.
    Axtell, M., Coykendall, J., Stickles, J.: Zero-divisor graphs of polynomial and power series over commutative rings. Comm. Algebra 33(6), 2043–2050 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Axtell, M., Stickles, J.: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204(2), 235–243 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Axtell, M., Stickles, J.: Irreducible divisor graphs in commutative rings with zero-divisors. Comm. Algebra 36(5), 1883–1893 (2008)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Axtell, M., Stickles, J., Trampbachls, W.: Zero-divisor ideals and realizable zero-divisor graphs. Involve 2(1), 17–27 (2009)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Axtell, M., Stickles, J., Warfel, J.: Zero-divisor graphs of direct products of commutative rings. Houst. J. Math. 32(4), 985–994 (2006)MATHMathSciNetGoogle Scholar
  22. 22.
    Azarpanah, F., Motamedi, M.: Zero-divisor graph of C(X). Acta. Math. Hung. 108(1–2), 25–36 (2005)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Beck, I.: Coloring of commutative rings. J. Algebra 116(1), 208–226 (1988)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Behboodi, M.: Zero divisor graphs for modules over commutative rings. J. Commut. Algebra, to appearGoogle Scholar
  25. 25.
    Belshoff, R., Chapman, J.: Planar zero-divisor graphs. J. Algebra 316(1), 471–480 (2007)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Bhat, V.K., Raina, R., Nehra, N., Prakash, O.: A note on zero divisor graph over rings. Int. J. Contemp. Math. Sci. 2(13–16), 667–671 (2007)MATHMathSciNetGoogle Scholar
  27. 27.
    Bhatwadekar, S.M., Dumaldar, M.N., Sharma, P.K.: Some non-chromatic rings. Comm. Algebra 26(2), 477–505 (1998)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Canon, G., Neuburg, K., Redmond, S.P.: Zero-divisor graphs of nearrings and semigroups, Nearrings and Nearfields, pp. 189–200. Springer, Dordrecht (2005)Google Scholar
  29. 29.
    Chakrabarty, I., Ghosh, S., Mukherjee, T.K., Sen, M.K.: Intersection graphs of ideals of rings. Electron. Notes Discrete Math. 23, 23–32 (2005)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Chiang-Hsieh, H.-J.: Classification of rings with projective zero-divisor graphs. J. Algebra 319(7), 2789–2802 (2008)MATHMathSciNetGoogle Scholar
  31. 31.
    Chiang-Hsieh, H.-J., Wang, H.-J., Smith, N.O., Commutative rings with toroidal zero-divisor graphs. Houst. J. Math. 36(1), 1–31 (2010)MathSciNetGoogle Scholar
  32. 32.
    Coykendall, J., Maney, J.: Irreducible divisor graphs. Comm. Algebra 35(3), 885–896 (2007)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal. J. Algebra Appl. 6(3), 443–459 (2007)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    DeMeyer, F., DeMeyer, L.: Zero-divisor graphs of semigroups. J. Algebra 283(1), 190–198 (2005)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    DeMeyer, F., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semigroup. Semigroup Forum 65(2), 206–214 (2002)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings. Int. J. Commut. Rings 1(3), 93–106 (2002)Google Scholar
  37. 37.
    DeMeyer, F., Schneider, K.: Automorphisms and zero-divisor graphs of commutative rings, Commutative rings, pp. 25–37. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of [36])Google Scholar
  38. 38.
    Diestel, R.: “Graph theory”. Springer, New York (1997)MATHGoogle Scholar
  39. 39.
    Dumaldar, M.N., Sharma, P.K.: Comments over “Some non-chromatic rings”. Comm. Algebra 26(11), 3871–3883 (1998)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Ebrahimi Atani, S., Ebrahimi Sarvandi, Z.: Zero-divisor graphs of idealizations with respect to prime modules. Int. J. Contemp. Math. Sci. 2(25–28), 1279–1283 (2007)MathSciNetGoogle Scholar
  41. 41.
    Ebrahimi Atani, S., Kohan, M.: The diameter of a zero-divisor graph for finite direct product of commutative rings. Sarajevo J. Math. 3(16), 149–156 (2007)MathSciNetGoogle Scholar
  42. 42.
    Eslahchi, C., Rahimi, A.: The k-zero-divisor hypergraph of a commutative ring. Int. J. Math. Math. Sci., Art. ID 50875, 15 (2007)Google Scholar
  43. 43.
    Ganesan, N.: Properties of rings with a finite number of zero-divisors. Math. Ann. 157, 215–218 (1964)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Gilmer, R.: Zero divisors in commutative rings. Am. Math. Monthly 93(5), 382–387 (1986)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Huckaba, J.A.: “Commutative rings with zero divisors”. Marcel Dekker, New York/Basil (1988)MATHGoogle Scholar
  46. 46.
    LaGrange, J.D.: Complemented zero-divisor graphs and Boolean rings. J. Algebra 315(2), 600–611 (2007)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    LaGrange, J.D.: On realizing zero-divisor graphs. Comm. Algebra 36(12), 4509–4520 (2008)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    LaGrange, J.D.: The cardinality of an annihilator class in a von Neumann regular ring. Int. Electron. J. Algebra 4, 63–82 (2008)MATHMathSciNetGoogle Scholar
  49. 49.
    LaGrange, J.D.: Invariants and isomorphism theorems for zero-divisor graphs of commutative rings of quotients, preprintGoogle Scholar
  50. 50.
    LaGrange, J.D.: Weakly central-vertex complete graphs with applications to commutative rings. J. Pure Appl. Algebra 214(7), 1121–1130 (2010)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    LaGrange, J.D.: Characterizations of three classes of zero-divisor graphs. Can. Math. Bull. to appearGoogle Scholar
  52. 52.
    Lambeck, J.: “Lectures on rings and modules”. Blaisdell Publishing Company, Waltham (1966)Google Scholar
  53. 53.
    Lauve, A.: Zero-divisor graphs of finite commutative rings. Honors Senior Thesis, The University of Oklahoma, Norman, OK, April, 1999Google Scholar
  54. 54.
    Levy, R., Shapiro, J.: The zero-divisor graph of von Neumann regular rings. Comm. Algebra 30(2), 745–750 (2002)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Livingston, P.S.: Structure in zero-divisor graphs of commutative rings. Masters Thesis, The University of Tennessee, Knoxville, TN, Dec. 1997Google Scholar
  56. 56.
    Long, Y., Huang, Y.: The correspondence between zero-divisor graphs with 6 vertices and their semigroups. J. Algebra Appl. 6(2), 287–290 (2007)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Lu, D., Tong, W.: The zero-divisor graphs of abelian regular rings. Northeast. Math. J. 20(3), 339–348 (2004)MATHMathSciNetGoogle Scholar
  58. 58.
    Lu, D., Wu, T.: The zero-divisor graphs which are uniquely determined by neighborhoods. Comm. Algebra 35(12), 3855–3864 (2007)MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Lucas, T.G.: The diameter of a zero-divisor graph. J. Algebra 301(1), 174–193 (2006)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Maimani, H.R., Pournaki, M.R., Yassemi, S.: Zero-divisor graphs with respect to an ideal. Comm. Algebra 34(3), 923–929 (2006)MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graphs of commutative rings. J. Algebra 319(4), 1801–1808 (2008)MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Maimani, H.R., Yassemi, S.: Zero-divisor graphs of amalgamated duplication of a ring along an ideal. J. Pure Appl. Algebra 212(1), 168–174 (2008)MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Maney, J.: Irreducible divisor graphs, II. Comm. Algebra 36(9), 3496–3513 (2008)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Mulay, S.B.: Cycles and symmetries of zero-divisors. Comm. Algebra 30(7), 3533–3558 (2002)MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Mulay, S.B.: Rings having zero-divisor graphs of small diameter or large girth. Bull. Aust. Math. Soc. 72(3), 481–490 (2005)MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Mulay, S.B., Chance, M.: Symmetries of colored power-set graphs. J. Commut. Algebra, to appearGoogle Scholar
  67. 67.
    Redmond, S.P.: The zero-divisor graph of a non-commutative ring. Int. J. Commut. Rings 1(4), 203–211 (2002)Google Scholar
  68. 68.
    Redmond, S.P.: The zero-divisor graph of a non-commutative ring, Commutative Rings, pp. 39–47. Nova Science Publishers, Hauppauge, NY (2002). (Reprint of [67])Google Scholar
  69. 69.
    Redmond, S.P.: An ideal-based zero-divisor graph of a commutative ring. Comm. Algebra 31(9), 4425–4443 (2003)MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Redmond, S.P.: Structure in the zero-divisor graph of a non-commutative ring. Houst. J. Math. 30(2), 345–355 (2004)MATHMathSciNetGoogle Scholar
  71. 71.
    Redmond, S.P.: Central sets and radii of the zero-divisor graphs of commutative rings. Comm. Algebra 34(7), 2389–2401 (2006)MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Redmond, S.P.: On zero-divisor graphs of small finite commutative rings. Discrete Math. 307(9), 1155–1166 (2007)MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Redmond, S.P.: Counting zero-divisors, Commutative Rings: New Research, pp. 7–12. Nova Science Publishers, Hauppauge, NY (2009)Google Scholar
  74. 74.
    Samei, K.: The zero-divisor graph of a reduced ring. J. Pure Appl. Algebra 209(3), 813–821 (2007)MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Sharma, P.K., Bharwadekar, S.M.: Zero-divisor graphs with respect to an ideal. J. Algebra 176(1), 124–127 (1995)MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Smith, N.O.: Planar zero-divisor graphs. Int. J. Commut. Rings 2(4), 177–188 (2003)MATHGoogle Scholar
  77. 77.
    Smith, N.O.: Graph-theoretic Properties of the Zero-Divisor Graph of a Ring. Dissertation, The University of Tennessee, Knoxville, TN, May 2004Google Scholar
  78. 78.
    Smith, N.O.: Planar zero-divisor graphs, Focus on commutative rings research, pp. 177–186. Nova Science Publishers, New York (2006). (Reprint of [76])Google Scholar
  79. 79.
    Smith, N.O.: Infinite planar zero-divisor graphs. Comm. Algebra 35(1), 171–180 (2007)MATHMathSciNetGoogle Scholar
  80. 80.
    Taylor, M.: Zero-divisor graphs with looped vertices. preprintGoogle Scholar
  81. 81.
    Vishne, U.: The graph of zero-divisor ideals. preprintGoogle Scholar
  82. 82.
    Wang, H.-J.: Zero-divisor graphs of genus one. J. Algebra 304(2), 666–678 (2006)MATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    Wickham, C.: Classification of rings with genus one zero-divisor graphs. Comm. Algebra 36(2), 325–345 (2008)MATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    Wright, S.: Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups. Comm. Algebra 35(6), 1987–1991 (2007)MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Wu, T.: On directed zero-divisor graphs of finite rings. Discrete Math. 296(1), 73–86 (2005)MATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Wu, T., Lu, D.: Zero-divisor semigroups and some simple graphs. Comm. Algebra 34(8), 3043–3052 (2006)MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Wu, T., Lu, D.: Sub-semigroups determined by the zero-divisor graph. Discrete Math. 308(22), 5122–5135 (2008)MATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Zuo, M., Wu, T.: A new graph structure of commutative semigroups. Semigroup Forum 70(1), 71–80 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David F. Anderson
    • 1
  • Michael C. Axtell
    • 2
  • Joe A. SticklesJr.
    • 3
  1. 1.The University of TennesseeKnoxvilleUSA
  2. 2.University of St. ThomasSt. PaulUSA
  3. 3.Millikin UniversityDecaturUSA

Personalised recommendations