Advertisement

Characteristic p methods in characteristic zero via ultraproducts

  • Hans Schoutens
Chapter

Abstract

In recent decades, by exploiting the algebraic properties of the Frobenius in positive characteristic, many so-called homological conjectures and intersection conjectures have been established, culminating into the powerful theory of tight closure and big Cohen–Macaulay algebras. In the present article, I give a survey of how these methods also can be applied directly in characteristic zero by taking ultraproducts, rather than through the cumbersome lifting/reduction techniques. This has led to some new results regarding rational and log-terminal singularities, as well as some new vanishing theorems. Even in mixed characteristic, we can get positive results, albeit only asymptotically.

Keywords

Local Ring Characteristic Zero Noetherian Ring Regular Ring Schubert Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M.: Algebraic approximation of structures over complete local rings. Inst. Hautes Études Sci. Publ. Math. 36, 23–58 (1969)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aschenbrenner, M.: Bounds and definability in polynomial rings. Quart. J. Math. 56(3), 263–300 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aschenbrenner, M., Schoutens, H.: Lefschetz extensions, tight closure and big Cohen-Macaulay algebras. Israel J. Math. 161, 221–310 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ax, J., Kochen, S.: Diophantine problems over local fields I, II. Am. J. Math. 87, 605–630, 631–648 (1965)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Becker, J., Denef, J., vanden Dries, L., Lipshitz, L.: Ultraproducts and approximation in local rings I. Invent. Math. 51, 189–203 (1979)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Becker, J., Denef, J., Lipshitz, L.: The approximation property for some 5-dimensional Henselian rings. Trans. Am. Math. Soc. 276(1), 301–309 (1983)MATHMathSciNetGoogle Scholar
  7. 7.
    Brenner, H.: How to rescue solid closure. J. Algebra 265, 579–605 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brenner, H., Katzman, M.: On the arithmetic of tight closure. J. Am. Math. Soc. 19(3), 659–672 (electronic) (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brenner, H., Monsky, P.: Tight closure does not commute with localization (2007). ArXiv:0710.2913Google Scholar
  10. 10.
    Briançon, J., Skoda, H.: Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de C n. C. R. Acad. Sci. Paris 278, 949–951 (1974)MATHGoogle Scholar
  11. 11.
    Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  12. 12.
    Chang, C., Keisler, H.: Model theory. North-Holland, Amsterdam (1973)MATHGoogle Scholar
  13. 13.
    Denef, J., Lipshitz, L.: Ultraproducts and approximation in local rings II. Math. Ann. 253, 1–28 (1980)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Denef, J., Schoutens, H.: On the decidability of the existential theory of \({\mathbb{F}}_{p}t\). In: Valuation theory and its applications, vol. II (Saskatoon, 1999), Fields Inst. Commun., vol.33, pp.43–60. Am. Math. Soc. (2003)Google Scholar
  15. 15.
    vanden Dries, L.: Algorithms and bounds for polynomial rings. In: Logic Colloquium, pp.147–157 (1979)Google Scholar
  16. 16.
    Ein, L., Lazarsfeld, R., Smith, K.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144, 241–252 (2001)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  18. 18.
    Eklof, P.: Ultraproducts for algebraists. In: Handbook of Mathematical Logic, pp. 105–137. North-Holland (1977)Google Scholar
  19. 19.
    Eršhov, Y.: On the elementary theory of maximal normed fields I. Algebra i Logica 4, 31–69 (1965)MATHGoogle Scholar
  20. 20.
    Eršhov, Y.: On the elementary theory of maximal normed fields II. Algebra i Logica 5, 8–40 (1966)Google Scholar
  21. 21.
    Evans, E., Griffith, P.: The syzygy problem. Ann. Math. 114, 323–333 (1981)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Hara, N.: A characterization of rational singularities in terms of injectivity of Frobenius maps. Am. J. Math. 120, 981–996 (1998)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)MATHGoogle Scholar
  24. 24.
    Heitmann, R.: The direct summand conjecture in dimension three. Ann. Math. 156, 695–712 (2002)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Henkin, L.: Some interconnections between modern algebra and mathematical logic. Trans. Am. Math. Soc. 74, 410–427 (1953)MATHMathSciNetGoogle Scholar
  26. 26.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hochster, M.: Big Cohen-Macaulay modules and algebras and embeddability in rings of Wittvectors. In: Proceedings of the conference on commutative algebra, Kingston 1975, Queen’s Papers in Pure and Applied Math., vol.42, pp. 106–195 (1975)Google Scholar
  28. 28.
    Hochster, M.: Topics in the Homological Theory of Modules over Commutative Rings, CBMS Regional Conf. Ser. in Math, vol.24. Am. Math. Soc., Providence, RI (1975)MATHGoogle Scholar
  29. 29.
    Hochster, M.: Cyclic purity versus purity in excellent Noetherian rings. Trans. Am. Math. Soc. 231, 463–488 (1977)MATHMathSciNetGoogle Scholar
  30. 30.
    Hochster, M.: Canonical elements in local cohomology modules and the direct summand conjecture. J. Algebra 84, 503–553 (1983)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hochster, M.: Solid closure. In: Commutative algebra: syzygies, multiplicities, and birational algebra, Contemp. Math., vol. 159, pp. 103–172. Am. Math. Soc., Providence (1994)Google Scholar
  32. 32.
    Hochster, M.: Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure. In: Commutative algebra: syzygies, multiplicities, and birational algebra, Contemp. Math., vol. 159, pp. 173–196. Am. Math. Soc., Providence (1994)Google Scholar
  33. 33.
    Hochster, M.: Big Cohen-Macaulay algebras in dimension three via Heitmann’s theorem. J. Algebra 254, 395–408 (2002)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Hochster, M., Huneke, C.: Tightly closed ideals. Bull. Am. Math. Soc. 18(1), 45–48 (1988)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Hochster, M., Huneke, C.: Tight closure, invariant theory, and the Briançon-Skoda theorem. J. Am. Math. Soc. 3, 31–116 (1990)MATHMathSciNetGoogle Scholar
  36. 36.
    Hochster, M., Huneke, C.: Infinite integral extensions and big Cohen-Macaulay algebras. Ann. Math. 135, 53–89 (1992)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Hochster, M., Huneke, C.: F-regularity, test elements, and smooth base change. Trans. Am. Math. Soc. 346, 1–62 (1994)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Hochster, M., Huneke, C.: Tight closure of parameter ideals and splitting in module-finite extensions. J. Alg. Geom. 3 (1994)Google Scholar
  39. 39.
    Hochster, M., Huneke, C.: Applications of the existence of big Cohen-Macaulay algebras. Adv. Math. 113, 45–117 (1995)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Hochster, M., Huneke, C.: Tight closure. In: Commutative Algebra, vol.15, pp. 305–338 (1997)MathSciNetGoogle Scholar
  41. 41.
    Hochster, M., Huneke, C.: Tight closure in equal characteristic zero (2000). Preprint on http://www.math.lsa.umich.edu/\-\~hochster/\-tcz.ps.Z
  42. 42.
    Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147, 349–369 (2002)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Hochster, M., Roberts, J.: Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math. 13, 115–175 (1974)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)MATHCrossRefGoogle Scholar
  45. 45.
    Huneke, C.: Tight Closure and its Applications, CBMS Regional Conf. Ser. in Math, vol.88. Am. Math. Soc. (1996)MATHGoogle Scholar
  46. 46.
    Huneke, C., Lyubeznik, G.: Absolute integral closure in positive characteristic. Adv. Math. 210(2), 498–504 (2007)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Huneke, C., Smith, K.: Tight closure and the Kodaira vanishing theorem. J. Reine Angew. Math. 484, 127–152 (1997)MATHMathSciNetGoogle Scholar
  48. 48.
    Kawamata, Y.: The cone of curves of algebraic varieties. Ann. Math. 119, 603–633 (1984)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Kollár, J., Mori, S.: Birational Geometry and Algebraic Varieties. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  50. 50.
    Kunz, E.: Characterizations of regular local rings of characteristic p. Am. J. Math. 41, 772–784 (1969)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Lauritzen, N., Raben-Pedersen, U., Thomsen, J.: Global F-regularity of Schubert varieties with applications to D-modules. J. Am. Math. Soc. 19(2), 345–355 (electronic) (2004)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Lipman, J., Sathaye, A.: Jacobian ideals and a theorem of Briançon-Skoda. Michigan Math. J. 28, 199–222 (1981)MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Lipman, J., Teissier, B.: Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals. Michigan Math. J. 28, 97–116 (1981)MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Lyubeznik, G., Smith, K.: Strong and weakly F-regularity are equivalent for graded rings. Am. J. Math. 121, 1279–1290 (1999)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  56. 56.
    Mehta, V., Ramanathan, A.: Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. 122, 27–40 (1985)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Milne, J.: Etale Cohomology. 33. Princeton Math. (1980)Google Scholar
  58. 58.
    Peskine, C., Szpiro, L.: Dimension projective finie et cohomologie etale. Inst. Hautes Études Sci. Publ. Math. 42, 47–119 (1972)MATHCrossRefGoogle Scholar
  59. 59.
    Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104, 85–115 (1986)MATHMathSciNetGoogle Scholar
  60. 60.
    Roberts, P.: Le théorème d’intersections. C. R. Acad. Sci. Paris 304, 177–180 (1987)MATHGoogle Scholar
  61. 61.
    Roberts, P.: A computation of local cohomology. In: Proceedings Summer Research Conference On Commutative Algebra, Contemp. Math., vol. 159, pp. 351–356. Am. Math. Soc., Providence (1994)Google Scholar
  62. 62.
    Roberts, P.: Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics, vol. 133. Cambridge University Press, Cambridge (1998)Google Scholar
  63. 63.
    Rotthaus, C.: On the approximation property of excellent rings. Invent. Math. 88, 39–63 (1987)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Schmidt, K., vanden Dries, L.: Bounds in the theory of polynomial rings over fields. A non-standard approach. Invent. Math. 76, 77–91 (1984)MATHGoogle Scholar
  65. 65.
    Schoutens, H.: Bounds in cohomology. Israel J. Math. 116, 125–169 (2000)MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Schoutens, H.: Uniform bounds in algebraic geometry and commutative algebra. In: Connections between model theory and algebraic and analytic geometry, Quad. Mat., vol.6, pp. 43–93. Dept. Math., Seconda Univ. Napoli, Caserta (2000)Google Scholar
  67. 67.
    Schoutens, H.: Lefschetz principle applied to symbolic powers. J. Algebra Appl. 2, 177–187 (2003)MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Schoutens, H.: Mixed characteristic homological theorems in low degrees. C. R. Acad. Sci. Paris 336, 463–466 (2003)MATHMathSciNetGoogle Scholar
  69. 69.
    Schoutens, H.: Non-standard tight closure for affine \(\mathbb{C}\)-algebras. Manuscripta Math. 111, 379–412 (2003)MATHMathSciNetGoogle Scholar
  70. 70.
    Schoutens, H.: A non-standard proof of the Briançon-Skoda theorem. Proc. Am. Math. Soc. 131, 103–112 (2003)MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Schoutens, H.: Projective dimension and the singular locus. Comm. Algebra 31, 217–239 (2003)MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Schoutens, H.: Canonical big Cohen-Macaulay algebras and rational singularities. Ill. J. Math. 48, 131–150 (2004)MATHMathSciNetGoogle Scholar
  73. 73.
    Schoutens, H.: Log-terminal singularities and vanishing theorems via non-standard tight closure. J. Alg. Geom. 14, 357–390 (2005)MATHMathSciNetGoogle Scholar
  74. 74.
    Schoutens, H.: Asymptotic homological conjectures in mixed characteristic. Pacific J. Math. 230, 427–468 (2007)MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Schoutens, H.: Bounds in polynomial rings over Artinian local rings. Monatsh. Math. 150, 249–261 (2007)MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Schoutens, H.: Pure subrings of regular rings are pseudo-rational. Trans. Am. Math. Soc. 360, 609–627 (2008)MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Schoutens, H.: Use of ultraproducts in commutative algebra. Lecture Notes in Mathematics, 1999, Springer (2010)Google Scholar
  78. 78.
    Schoutens, H.: Dimension theory for local rings of finite embedding dimension (inpreparation). ArXiv:0809.5267v1Google Scholar
  79. 79.
    Smith, K.: Tight closure of parameter ideals. Invent. Math. 115, 41–60 (1994)MATHCrossRefMathSciNetGoogle Scholar
  80. 80.
    Smith, K.: F-rational rings have rational singularities. Am. J. Math. 119, 159–180 (1997)MATHCrossRefGoogle Scholar
  81. 81.
    Smith, K.: Vanishing, singularities and effective bounds via prime characteristic local algebra. In: Algebraic geometry – Santa Cruz 1995, Proc. Sympos. Pure Math., vol.62, pp. 289–325. Am. Math. Soc., Providence, RI (1997)Google Scholar
  82. 82.
    Smith, K.: Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties. Michigan Math. J. 48, 553–572 (2000)MATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    Smith, K.: An introduction to tight closure. In: Geometric and combinatorial aspects of commutative algebra (Messina, 1999), Lecture Notes in Pure and Appl. Math., vol. 217, pp. 353–377. Dekker, New York (2001)Google Scholar
  84. 84.
    Spivakovsky, M.: A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms. J. Am. Math. Soc. 12, 381–444 (1999)MATHMathSciNetGoogle Scholar
  85. 85.
    Strooker, J.: Homological Questions In Local Algebra, LMS Lect. Note Ser., vol. 145. Cambridge University Press (1990)Google Scholar
  86. 86.
    Swan, R.: Néron-Popescu desingularization (Spring 1995). Expanded notes from a University of Chicago series of lecturesGoogle Scholar
  87. 87.
    Wall, C.: Lectures on C stability and classification. In: Proceedings of Liverpool Singularities–Symposium I, Lect. Notes in Math., vol. 192, pp. 178–206. Springer (1971)Google Scholar
  88. 88.
    Weil, A.: Foundations of algebraic geometry. Am. Math. Soc., Providence, RI (1962)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsCity University of New YorkNew YorkUSA

Personalised recommendations