Skip to main content

Direct-sum behavior of modules over one-dimensional rings

  • Chapter
  • First Online:
Commutative Algebra

Abstract

Let R be a reduced, one-dimensional Noetherian local ring whose integral closure \(\overline{R}\) is finitely generated over R. Since \(\overline{R}\) is a direct product of finitely many principal ideal domains (one for each minimal prime ideal of R), the indecomposable finitely generated \(\overline{R}\)-modules are easily described, and every finitely generated \(\overline{R}\)-module is uniquely a direct sum of indecomposable modules. In this article we will see how little of this good behavior trickles down to R. Indeed, there are relatively few situations where one can describe all of the indecomposable R-modules, or even the torsion-free ones. Moreover, a given finitely generated module can have many different representations as a direct sum of indecomposable modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeth, N.: A Krull-Schmidt theorem for one-dimensional rings with finite Cohen–Macaulay type. J. Pure Appl. Algebra 208, 923–940 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baeth, N., Luckas, M.: Bounds for indecomposable torsion-free modules. preprint

    Google Scholar 

  3. Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Cambridge Stud. in Adv. Math., vol.39. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  5. Buchweitz, R.-O., Greuel, G.-M., Schreyer, F.-O.: Cohen–Macaulay modules on hypersurface singularities II. Invent. Math. 88, 165–182 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cimen, N.: One-dimensional rings of finite Cohen–Macaulay type. Ph.D. Thesis, University of Nebraska (1994)

    Google Scholar 

  7. Cimen, N., Wiegand, R., Wiegand, S.: One-dimensional local rings of finite representation type. In: Facchini, A., Menini, C. (eds.) Abelian groups and modules. Kluwer (1995)

    Google Scholar 

  8. Crabbe, A., Saccon, S.: Manuscript in preparation

    Google Scholar 

  9. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. Math. 35, 413–422 (1913)

    Article  Google Scholar 

  10. Dieterich, E.: Representation types of group rings over complete discrete valuation rings. In: Roggenkamp, K. (ed.) Integral representations and applications, Lecture Notes in Math. vol. 882. Springer, New York (1980)

    Google Scholar 

  11. Dieudonné, J., Grothendieck, A.: Éléments de Géométrie Algébrique IV, Partie 2. Publ.Math.I.H.E.S. 24 (1967)

    Google Scholar 

  12. Drozd, Ju.A., Roĭter, A.V.: Commutative rings with a finite number of indecomposable integral representations, (in Russian). Izv. Akad. Nauk. SSSR, Ser. Mat. 31, 783–798 (1967)

    MATH  MathSciNet  Google Scholar 

  13. Eisenbud, D., Evans, E.G. Jr.: Generating modules efficiently: theorems from algebraic K-theory. J. Algebra 27, 278–305 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Evans, E.G. Jr.: Krull-Schmidt and cancellation over local rings. Pacific J. Math. 46, 115–121 (1973)

    MATH  MathSciNet  Google Scholar 

  15. Facchini, A., Hassler, W., Klingler, L., Wiegand, R.: Direct-sum decompositions over one-dimensional Cohen–Macaulay local rings. In: Brewer, J., Glaz, S., Heinzer, W. (eds.) Multiplicative Ideal Theory in Commutative Algebra: A tribute to the work of Robert Gilmer. Springer (2006)

    Google Scholar 

  16. Green, E., Reiner, I.: Integral representations and diagrams. Michigan Math. J. 25, 53–84 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Greuel, G.-M., Knörrer, H.: Einfache Kurvensingularitäten und torsionfreie Moduln. Math. Ann. 270, 417–425 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hassler, W.: Criteria for direct-sum cancellation, with an application to negative quadratic orders. J. Algebra 281, 395–405 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hassler, W.: Direct-sum cancellation for modules over real quadratic orders. J. Pure Appl. Algebra 208, 575–589 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hassler, W., Karr, R., Klingler, L., Wiegand, R.: Large indecomposable modules over local rings. J. Algebra 303, 202–215 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hassler, W., Karr, R., Klingler, L., Wiegand, R.: Big indecomposable modules and direct-sum relations. Ill. J. Math. 51, 99–122 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Hassler, W., Karr, R., Klingler, L., Wiegand, R.: Indecomposable modules of large rank over Cohen–Macaulay local rings. Trans.Am.Math.Soc. 360, 1391–1406 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hassler, W., Wiegand, R.: Direct-sum cancellation for modules over one-dimensional rings. J. Algebra 283, 93–124 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hassler, W., Wiegand, R.: Extended modules. J.Commut. Algebra (to appear). Available at http://www.math.unl.edu/~rwiegand1/papers.html

  25. Karr, R.: Failure of cancellation for quartic and higher-degree orders. J. Algebra Appl. 1, 469–481 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Karr, R.: Finite representation type and direct-sum cancellation. J. Algebra 273, 734–752 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kattchee, K.: Monoids and direct-sum decompositions over local rings. J.Algebra 256, 51–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kronecker, L.: Über die congruenten Transformationen der bilinearen Formen. In: Hensel, K. (ed.) Monatsberichte Königl.Preuß.Akad.Wiss.Berlin, pp. 397–447 (1874) [reprinted in: Leopold Kroneckers Werke, vol. 1, pp. 423–483. Chelsea, New York (1968)]

    Google Scholar 

  29. Klingler, L., Levy, L.S.: Representation type of commutative Noetherian rings I: Local wildness. Pacific J.Math. 200, 345–386 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Klingler, L., Levy, L.S.: Representation type of commutative Noetherian rings II: Local tameness. Pacific J.Math. 200, 387–483 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Klingler, L., Levy, L.S.: Representation type of commutative Noetherian rings III: Global wildness and tameness. Mem.Am.Math.Soc. (to appear)

    Google Scholar 

  32. Lech, C.: A method for constructing bad Noetherian local rings. Algebra, Algebraic Topology and their Interactions (Stockholm, 1983), Lecture Notes in Math. vol. 1183. Springer, Berlin (1986)

    Google Scholar 

  33. Leuschke, G., Wiegand, R.: Ascent of finite Cohen–Macaulay type. J. Algebra 228, 674–681 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Leuschke, G., Wiegand, R.: Local rings of bounded Cohen–Macaulay type. Algebr. Represent. Theory 8, 225–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Levy, L.S., Odenthal, C.J.: Package deal theorems and splitting orders in dimension 1. Trans.Am.Math.Soc. 348, 3457–3503 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Reiner, I., Roggenkamp, K.W.: Integral Representations, Lecture Notes in Math., vol. 744. Springer, Berlin (1979)

    MATH  Google Scholar 

  37. Serre, J.-P.: Faisceaux algébriques cohérents. Ann. Math. 61(2), 197–278 (1955) in French

    Article  MathSciNet  Google Scholar 

  38. Vasconcelos, W.V.: On local and stable cancellation. An.Acad.Brasil.Ci. 37, 389–393 (1965)

    MathSciNet  Google Scholar 

  39. Warfield, R.B. Jr.: Decomposability of finitely presented modules. Proc.Am.Math.Soc. 25, 167–172 (1970)

    MATH  MathSciNet  Google Scholar 

  40. Weierstrass, K.: Zur Theorie der bilinearen und quadratischen Formen. Monatsberichte Königl.Preuß.Akad.Wiss.Berlin 310–338 (1968)

    Google Scholar 

  41. Wiegand, R.: Cancellation over commutative rings of dimension one and two. J. Algebra 88, 438–459 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wiegand, R.: Direct sum cancellation over commutative rings. Proc. Udine Conference on Abelian Groups and Modules, CISM 287, 241–266 (1985)

    Google Scholar 

  43. Wiegand, R.: Noetherian rings of bounded representation type, Commutative Algebra, Proceedings of a Microprogram (June 15 – July 2, 1987), pp. 497–516. Springer, New York (1989)

    Google Scholar 

  44. Wiegand, R.: Picard groups of singular affine curves over a perfect field. Math. Z. 200, 301–311 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wiegand, R.: One-dimensional local rings with finite Cohen–Macaulay type, Algebraic Geometry and its Applications, pp. 381–389. Springer, New York (1994)

    Google Scholar 

  46. Wiegand, R.: Local rings of finite Cohen–Macaulay type. J.Algebra 203, 156–168 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wiegand, R.: Direct-sum decompositions over local rings. J.Algebra 240, 83–97 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wiegand, R., Wiegand, S.: Stableisomorphismofmodulesoverone-dimensional rings. J. Algebra 107, 425–435 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wiegand, R., Wiegand, S.: Semigroups of modules: a survey, Proceedings of the International Conference on Rings and Things, Contemp. Math.. Am. Math. Soc. (to appear). Available at http://www.math.unl.edu/~rwiegand1/papers.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Karr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karr, R., Wiegand, R. (2011). Direct-sum behavior of modules over one-dimensional rings. In: Fontana, M., Kabbaj, SE., Olberding, B., Swanson, I. (eds) Commutative Algebra. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6990-3_10

Download citation

Publish with us

Policies and ethics