Transient Chaos in Spatially Extended Systems

  • Ying-Cheng Lai
  • Tamás Tél
Part of the Applied Mathematical Sciences book series (AMS, volume 173)


Chaos is not restricted to systems without any spatial extension: it in fact occurs commonly in spatially extended dynamical systems that are most typically described by nonlinear partial differential equations (PDEs). If the patterns generated by such a system change randomly in time, we speak of spatiotemporal chaos, a kind of temporally chaotic pattern-forming process. If, in addition, the patterns are also spatially irregular, there is fully developed spatiotemporal chaos. In principle, the phase-space dimension of a spatially extended dynamical system is infinite. However, in practice, when a spatial discretization scheme is used to solve the PDE, or when measurements are made in a physical experiment with finite spatial resolution, the effective dimension of the phase space is not infinite but still high.


Lyapunov Exponent Chaotic Attractor Stable Manifold Dimension Density Escape Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electrical EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Theoretical Physics Institute of PhysicsEötvös UniversityBudapestHungary

Personalised recommendations