Inhibitory Synaptic Plasticity and Neurotrophins

  • Jean-Luc Gaiarsa
  • Nicola Kuczewski
  • Christophe Porcher


Synaptic plasticity represents the capacity of individual synapses to adjust their strength in response to modifications in the level or pattern of intrinsic or sensory-driven activity. Due to the involvement of the inhibitory transmitter GABA in brain development, synaptic function and cognition, interest in GABAergic synaptic plasticity has intensified in recent years. Neurotrophins are a family of secreted proteins that promote survival, growth and differentiation of neurons in the central nervous system. Recent advances show that besides this trophic function, neurotrophins, and brain-derived neurotrophic factor (BDNF) in particular, can exert both short-term and long-term modulations on the strength and development of GABAergic synaptic transmission. In this review, we will summarize recent findings showing that BDNF can operate as a locally released feedback modulator of GABAergic synaptic transmission.


Brain Derive Neurotrophic Factor GABAergic Interneuron GABAergic Synapse Conditioning Protocol GABAergic Terminal 


  1. Abidin I, Eysel UT, Lessmann V, Mittmann T (2008) Impaired GABAergic inhibition in the visual cortex of brain-derived neurotrophic factor heterozygous knockout mice. J Physiol 586: 1885–1901.CrossRefPubMedGoogle Scholar
  2. Aguado F, Carmona MA, Pozas E, Aguilo A, Martinez-Guijarro FJ, Alcantara S, Borrell V, Yuste R, Ibanez CF, Soriano E (2003) BDNF regulates sponaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of K+/Cl co-transport. Development 130: 1287–1280.CrossRefGoogle Scholar
  3. Amaral MD, Chapleau CA, Pozzo-Miller L (2007) Transient receptor potential channels as novel effectors of brain-derived neurotrophic factor signaling: potential implications for Rett syndrome. Pharmacol Ther 113: 394–409.CrossRefPubMedGoogle Scholar
  4. Baldelli P, Hernandez-Guijo JM, Carabelli V, Carbone E (2005) Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses. J Neurosci 25: 3358–3368.CrossRefPubMedGoogle Scholar
  5. Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21: 813–825.CrossRefPubMedGoogle Scholar
  6. Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19: 1708–1716.PubMedGoogle Scholar
  7. Ben Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87: 1215–1284.CrossRefPubMedGoogle Scholar
  8. Ben-Ari Y, Cherubini E, Corradetti R, Gaïarsa J-L (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol (Lond) 416: 303–325.Google Scholar
  9. Berghuis P, Dobszay MB, Sousa KM, Schulte G, Mager PP, Hartig W, Gorcs TJ, Zilberter Y, Ernfors P, Harkany T (2004) Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons. Eur J Neurosci 20: 1290–1306.CrossRefPubMedGoogle Scholar
  10. Berninger B, Marty S, Zafra F, Da Penha Berzaghi M, Thoenen H, Lindholm D (1995) GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 121: 2327–2335.PubMedGoogle Scholar
  11. Biffo S, Offenhauser N, Carter BD, Barde YA (1995) Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development 121: 2461–2470.PubMedGoogle Scholar
  12. Bolton MM, Lo DC, Sherwood NT (2000) Long-term regulation of excitatory and inhibitory synaptic transmission in hippocampal cultures by brain-derived neurotrophic factor. Prog Brain Res 128: 203–218.CrossRefPubMedGoogle Scholar
  13. Brunig I, Penschuck S, Berninger B, Benson J, Fritschy JM (2001) BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABA(A) receptor surface expression. Eur J Neurosci 13: 1320–1328.CrossRefPubMedGoogle Scholar
  14. Caillard O, Ben-Ari Y, Gaïarsa J-L (1999) Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J Physiol (Lond) 518.1: 109–119.CrossRefGoogle Scholar
  15. Canossa M, Gartner A, Campana G, Inagaki N, Thoenen H (2001) Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. EMBO J 20: 1640–1650.CrossRefPubMedGoogle Scholar
  16. Carmona MA, Pozas E, Martinez A, Espinosa-Parrilla JF, Soriano E, Aguado F (2006) Age-dependent spontaneous hyperexcitability and impairment of GABAergic function in the hippocampus of mice lacking trkB. Cereb Cortex 16: 47–63.CrossRefPubMedGoogle Scholar
  17. Cheng Q, Yeh HH (2003) Brain-derived neurotrophic factor attenuates mouse cerebellar granule cell GABA(A) receptor-mediated responses via postsynaptic mechanisms. J Physiol 548: 711–721.CrossRefPubMedGoogle Scholar
  18. Cheng Q, Yeh HH (2005) PLCgamma signaling underlies BDNF potentiation of Purkinje cell responses to GABA. J Neurosci Res 79: 616–627.CrossRefPubMedGoogle Scholar
  19. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438: 1017–1021.CrossRefPubMedGoogle Scholar
  20. Ernfors P, Wetmore C, Olson L, Persson H (1990) Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5: 511–526.CrossRefPubMedGoogle Scholar
  21. Fiorentino H, Kuczewski N, Diabira D, Ferrand N, Pangalos MN, Porcher C, Gaiarsa JL (2009) GABAB receptors activation triggers BDNF release and promotes the maturation of GBAergic synapses. J Neurosci in press.Google Scholar
  22. Frerking M, Malenka RC, Nicoll RA (1998) Brain-derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus. J Neurophysiol 80: 3383–3386.PubMedGoogle Scholar
  23. Ghorbel MT, Becker KG, Henley JM (2005) Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen. Physiol Genomics 22: 93–98.CrossRefPubMedGoogle Scholar
  24. Gorba T, Wahle P (1999) Expression of TrkB and TrkC but not BDNF mRNA in neurochemically identified interneurons in rat visual cortex in vivo and in organotypic cultures. Eur J Neurosci 11: 1179–1190.CrossRefPubMedGoogle Scholar
  25. Gubellini P, Ben Ari Y, Gaiarsa JL (2005) Endogenous neurotrophins are required for the induction of GABAergic long-term potentiation in the neonatal rat hippocampus. J Neurosci 25: 5796–5802.CrossRefPubMedGoogle Scholar
  26. Hartmann M, Heumann R, Lessmann V (2001) Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J 20: 5887–5897.CrossRefPubMedGoogle Scholar
  27. Hong EJ, McCord AE, Greenberg ME (2008) A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 60: 610–624.CrossRefPubMedGoogle Scholar
  28. Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5: 1177–1184.CrossRefPubMedGoogle Scholar
  29. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24: 677–736.CrossRefPubMedGoogle Scholar
  30. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72: 609–642.CrossRefPubMedGoogle Scholar
  31. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98: 739–755.CrossRefPubMedGoogle Scholar
  32. Inagaki T, Begum T, Reza F, Horibe S, Inaba M, Yoshimura Y, Komatsu Y (2008) Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons. Neurosci Res 61: 192–200.CrossRefPubMedGoogle Scholar
  33. Jin X, Hu H, Mathers PH, Agmon A (2003) Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures. J Neurosci 23: 5662–5673.PubMedGoogle Scholar
  34. Jovanovic JN, Thomas P, Kittler JT, Smart TG, Moss SJ (2004) Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J Neurosci 24: 522–530.CrossRefPubMedGoogle Scholar
  35. Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, Jovanovic JN, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Moss SJ, Nabekura J, Hirata M (2006) Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition. J Biol Chem 281: 22180–22189.CrossRefPubMedGoogle Scholar
  36. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10: 381–391.CrossRefPubMedGoogle Scholar
  37. Kasyanov AM, Safiulina VF, Voronin LL, Cherubini E (2004) GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc Natl Acad Sci USA 101: 3967–3972.CrossRefPubMedGoogle Scholar
  38. Kim HG, Wang T, Olafsson P, Lu B (1994) Neurotrophin 3 potentiates neuronal activity and inhibits gamma-aminobutyratergic synaptic transmission in cortical neurons. Proc Natl Acad Sci USA 91: 12341–12345.CrossRefPubMedGoogle Scholar
  39. Kohara K, Kitamura A, Adachi N, Nishida M, Itami C, Nakamura S, Tsumoto T (2003) Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture. J Neurosci 23: 6123–6131.PubMedGoogle Scholar
  40. Kohara K, Kitamura A, Morishima M, Tsumoto T (2001) Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291: 2419–2423.CrossRefPubMedGoogle Scholar
  41. Kohara K, Yasuda H, Huang Y, Adachi N, Sohya K, Tsumoto T (2007) A local reduction in cortical GABAergic synapses after a loss of endogenous brain-derived neurotrophic factor, as revealed by single-cell gene knock-out method. J Neurosci 27: 7234–7244.CrossRefPubMedGoogle Scholar
  42. Kolarow R, Brigadski T, Lessmann V (2007) Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J Neurosci 27: 10350–10364.CrossRefPubMedGoogle Scholar
  43. Komatsu Y (1996) GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 16: 6342–6352.PubMedGoogle Scholar
  44. Kotak VC, Dimattina C, Sanes DH (2001) GABAB and Trk receptor signaling mediates long-lasting inhibitory synaptic depression. J Neurophysiol 86: 536–540.PubMedGoogle Scholar
  45. Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science 295: 1729–1734.CrossRefPubMedGoogle Scholar
  46. Kuczewski N, Langlois A, Fiorentino H, Bonnet S, Marissal T, Diabira D, Ferrand N, Porcher C, Gaiarsa JL (2008a) Spontaneous glutamatergic activity induces a BDNF-dependent potentiation of GABAergic synapses in the newborn rat hippocampus. J Physiol 586: 5119–5128.CrossRefPubMedGoogle Scholar
  47. Kuczewski N, Porcher C, Ferrand N, Fiorentino H, Pellegrino C, Kolarow R, Lessmann V, Medina I, Gaiarsa JL (2008b) Backpropagating action potentials trigger dendritic release of BDNF during spontaneous network activity. J Neurosci 28: 7013–7023.CrossRefPubMedGoogle Scholar
  48. Kuczewski N, Porcher C, Lessmann V, Medina I, Gaiarsa JL (2009) Activity-Dependent Dendritic Release of BDNF and Biological Consequences. Mol Neurobiol 39: 37–49.CrossRefPubMedGoogle Scholar
  49. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294: 1945–1948.CrossRefPubMedGoogle Scholar
  50. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsáki G (2002) Correlated burst of activity in the neonatal rat hippocmpus in vivo. Science 296: 2049–2052.CrossRefPubMedGoogle Scholar
  51. Lessmann V, Brigadski T (2009) Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neurosci Res.Google Scholar
  52. Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69: 341–374.CrossRefPubMedGoogle Scholar
  53. Lindholm D, Castren E, Hengerer B, Zafra F, Berninger B, Thoenen H (1992) Differential Regulation of Nerve Growth Factor (NGF) Synthesis in Neurons and Astrocytes by Glucocorticoid Hormones. Eur J Neurosci 4: 404–410.CrossRefPubMedGoogle Scholar
  54. Liu Y, Zhang LI, Tao HW (2007) Heterosynaptic scaling of developing GABAergic synapses: dependence on glutamatergic input and developmental stage. J Neurosci 27: 5301–5312.CrossRefPubMedGoogle Scholar
  55. Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10: 86–98.CrossRefPubMedGoogle Scholar
  56. Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6: 603–614.CrossRefPubMedGoogle Scholar
  57. MacLean Bolton M, Pittman AJ, Lo DC (2000) Brain-derived neurotrophic factor differentially regulatesexcitatory and inhibitory synaptic transmission in hippoampal neurons. J Neurosci 20: 3221–3232.Google Scholar
  58. Magby JP, Bi C, Chen ZY, Lee FS, Plummer MR (2006) Single-cell characterization of retrograde signaling by brain-derived neurotrophic factor. J Neurosci 26: 13531–13536.CrossRefPubMedGoogle Scholar
  59. Marty S, Berninger B, Carroll P, Thoenen H (1996a) GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16: 565–570.CrossRefPubMedGoogle Scholar
  60. Marty S, Carroll P, Cellerino A, Castren E, Staiger V, Thoenen H, Lindholm D (1996b) Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J Neurosci 16: 675–687.PubMedGoogle Scholar
  61. Marty S, Wehrlé R, Sotelo C (2000) Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 20: 8087–8095.PubMedGoogle Scholar
  62. Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11: 131–133.CrossRefPubMedGoogle Scholar
  63. Mizoguchi Y, Ishibashi H, Nabekura J (2003a) The action of BDNF on GABA(A) currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons. J Physiol 548: 703–709.CrossRefPubMedGoogle Scholar
  64. Mizoguchi Y, Kanematsu T, Hirata M, Nabekura J (2003b) A rapid increase in the total number of cell surface functional GABAA receptors induced by brain-derived neurotrophic factor in rat visual cortex. J Biol Chem 278: 44097–44102.CrossRefPubMedGoogle Scholar
  65. Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165: 243–256.CrossRefPubMedGoogle Scholar
  66. Mohajerani MH, Sivakumaran S, Zacchi P, Aguilera P, Cherubini E (2007) Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3 CA1 connections in the hippocampus. Proc Natl Acad Sci USA.Google Scholar
  67. Nagappan G, Zaitsev E, Senatorov VV, Jr., Yang J, Hempstead BL, Lu B (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci USA 106: 1267–1272.CrossRefPubMedGoogle Scholar
  68. Obrietan K, Gao XB, Van den Pol AN (2002) Excitatory actions of GABA increase BDNF expression via a MAPK-CREB-dependent mechanism--a positive feedback circuit in developing neurons. J Neurophysiol 88: 1005–1015.PubMedGoogle Scholar
  69. Ohba S, Ikeda T, Ikegaya Y, Nishiyama N, Matsuki N, Yamada MK (2005) BDNF locally potentiates GABAergic presynaptic machineries: target-selective circuit inhibition. Cereb Cortex 15: 291–298.CrossRefPubMedGoogle Scholar
  70. Palizvan MR, Sohya K, Kohara K, Maruyama A, Yasuda H, Kimura F, Tsumoto T (2004) Brain-derived neurotrophic factor increases inhibitory synapses, revealed in solitary neurons cultured from rat visual cortex. Neuroscience 126: 955–966.CrossRefPubMedGoogle Scholar
  71. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306: 487–491.CrossRefPubMedGoogle Scholar
  72. Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26: 199–206.CrossRefPubMedGoogle Scholar
  73. Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A (2002) Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129: 3147–3160.PubMedGoogle Scholar
  74. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90: 397–406.CrossRefPubMedGoogle Scholar
  75. Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159: 747–752.CrossRefPubMedGoogle Scholar
  76. Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17: 4527–4535.PubMedGoogle Scholar
  77. Sakata K, Woo NH, Martinowich K, Greene JS, Schloesser RJ, Shen L, Lu B (2009) Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 106: 5942–5947.CrossRefPubMedGoogle Scholar
  78. Seil FJ, Drake-Baumann R (1994) Reduced cortical inhibitory synaptogenesis in organotypic cerebellar cultures developing in the absence of neuronal activity. J Comp Neurol 342: 366–377.CrossRefPubMedGoogle Scholar
  79. Seil FJ, Drake-Baumann R (2000) TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J Neurosci 20: 5367–5373.PubMedGoogle Scholar
  80. Shelton DL, Sutherland J, Gripp J, Camerato T, Armanini MP, Phillips HS, Carroll K, Spencer SD, Levinson AD (1995) Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J Neurosci 15: 477–491.PubMedGoogle Scholar
  81. Singh B, Henneberger C, Betances D, Arevalo MA, Rodriguez-Tebar A, Meier JC, Grantyn R (2006) Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons. J Neurosci 26: 7189–7200.CrossRefPubMedGoogle Scholar
  82. Sivakumaran S, Mohajerani MH, Cherubini E (2009) At immature mossy-fiber-CA3 synapses, correlated presynaptic and postsynaptic activity persistently enhances GABA release and network excitability via BDNF and cAMP-dependent PKA. J Neurosci 29: 2637–2647.CrossRefPubMedGoogle Scholar
  83. Tanaka T, Saito H, Matsuki N (1997) Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J Neurosci 17: 2959–2966.PubMedGoogle Scholar
  84. Tyler WJ, Perrett SP, Pozzo-Miller LD (2002) The role of neurotrophins in neurotransmitter release. Neuroscientist 8: 524–531.CrossRefPubMedGoogle Scholar
  85. Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci 7: 213–222.CrossRefPubMedGoogle Scholar
  86. Vicario-Abejon C, Collin C, McKay RD, Segal M (1998) Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 18: 7256–7271.PubMedGoogle Scholar
  87. Wang T, Xie K, Lu B (1995) Neurotrophins promote maturation of developing neuromuscular synapses. J Neurosci 15: 4796–4805.PubMedGoogle Scholar
  88. Wardle RA, Poo MM (2003) Brain-derived neurotrophic factor modulation of GABAergic synapses by postsynaptic regulation of chloride transport. J Neurosci 23: 8722–8732.PubMedGoogle Scholar
  89. Wetmore C, Ernfors P, Persson H, Olson L (1990) Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp Neurol 109: 141–152.CrossRefPubMedGoogle Scholar
  90. Wirth MJ, Brun A, Grabert J, Patz S, Wahle P (2003) Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development 130: 5827–5838.CrossRefPubMedGoogle Scholar
  91. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8: 1069–1077.CrossRefPubMedGoogle Scholar
  92. Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 22: 7580–7585.PubMedGoogle Scholar
  93. Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B (2009a) Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol 185: 727–741.CrossRefPubMedGoogle Scholar
  94. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL (2009b) Neuronal release of proBDNF. Nat Neurosci 12: 113–115.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jean-Luc Gaiarsa
    • 1
    • 2
  • Nicola Kuczewski
  • Christophe Porcher
  1. 1.INSERM U901 (Institut National de la Santé et de la Recherche Médicale Unité 901)INMED (Institut de Neurobiologie de la Méditerranée)Marseille Cedex 9France
  2. 2.Faculté des SciencesAix Marseille UniversitéMarseilleFrance

Personalised recommendations