Activity-Dependent Inhibitory Synaptic Plasticity Mediated by Chloride Regulation

  • Trevor Balena
  • Brooke A. Acton
  • Melanie A. Woodin
Chapter

Abstract

Synaptic plasticity is the ability of synapses to change their strength in response to either specific patterns of neuronal activity or the presence of certain chemicals. While the majority of research in this area has focused on excitatory glutamatergic synapses, synapses mediated by the neurotransmitter GABA have been receiving increasing attention. GABAA-mediated synaptic transmission is primarily due to a flux of chloride across the membrane, and accounts for the majority of fast inhibitory synaptic transmission in the mature brain. GABAergic transmission transitions from excitatory to inhibitory during nervous system development due to changes in the expression of key cation-chloride cotransporters that determine the level of neuronal chloride. Recent studies have demonstrated that activity-dependent GABAergic synaptic plasticity can be induced in the embryonic, early postnatal and mature nervous systems. In this review, we will summarize recent work which explores activity-dependent inhibitory synaptic plasticity that results from changes in cation-chloride cotransporter regulation or expression.

References

  1. Aguado F, Carmona MA, Pozas E, Aguilo A, Martinez-Guijarro FJ, Alcantara S, Borrell V, Yuste R, Ibanez CF, Soriano E (2003) BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl co-transporter KCC2. Development 130:1267–1280.PubMedCrossRefGoogle Scholar
  2. Aizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827–835.PubMedCrossRefGoogle Scholar
  3. Akerman CJ, Cline HT (2006) Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo. J Neurosci 26:5117–5130.PubMedCrossRefGoogle Scholar
  4. Balena T, Woodin MA (2008) Coincident pre- and postsynaptic activity downregulates NKCC1 to hyperpolarize E(Cl) during development. Eur J Neurosci 27:2402–2412.PubMedCrossRefGoogle Scholar
  5. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416:303–325.PubMedGoogle Scholar
  6. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284.PubMedCrossRefGoogle Scholar
  7. Berlau DJ, McGaugh JL (2006) Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol Learn Mem 86:123–132.PubMedCrossRefGoogle Scholar
  8. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472.PubMedGoogle Scholar
  9. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838.PubMedCrossRefGoogle Scholar
  10. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.PubMedGoogle Scholar
  11. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.PubMedCrossRefGoogle Scholar
  12. Brumback AC, Staley KJ (2008) Thermodynamic regulation of NKCC1-mediated Cl cotransport underlies plasticity of GABA(A) signaling in neonatal neurons. J Neurosci 28:1301–1312.PubMedCrossRefGoogle Scholar
  13. Caillard O, Ben-Ari Y, Gaiarsa JL (1999) Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J Neurosci 19:7568–7577.PubMedGoogle Scholar
  14. Caillard O, Ben-Ari Y, Gaiarsa JL (2000) Activation of presynaptic and postsynaptic ryanodine-sensitive calcium stores is required for the induction of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J Neurosci 20:RC94.Google Scholar
  15. Carmona MA, Pozas E, Martinez A, Espinosa-Parrilla JF, Soriano E, Aguado F (2006) Age-dependent spontaneous hyperexcitability and impairment of GABAergic function in the hippocampus of mice lacking trkB. Cereb Cortex 16:47–63.PubMedCrossRefGoogle Scholar
  16. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276.PubMedCrossRefGoogle Scholar
  17. Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048.PubMedCrossRefGoogle Scholar
  18. Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507 (Pt 1):237–247.PubMedCrossRefGoogle Scholar
  19. Delpire E, Days E, Lewis LM, Mi D, Kim K, Lindsley CW, Weaver CD (2009) Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci USA 106:5383–5388.PubMedCrossRefGoogle Scholar
  20. Dzhala VI, Talos DM, Sdrulla DA, Brumback AC, Mathews GC, Benke TA, Delpire E, Jensen FE, Staley KJ (2005) NKCC1 transporter facilitates seizures in the developing brain. Nat Med 11:1205–1213.PubMedCrossRefGoogle Scholar
  21. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59–87.PubMedCrossRefGoogle Scholar
  22. Fiumelli H, Woodin MA (2007) Role of activity-dependent regulation of neuronal chloride homeostasis in development. Curr Opin Neurobiol 17:81–86.PubMedCrossRefGoogle Scholar
  23. Fiumelli H, Cancedda L, Poo MM (2005) Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. Neuron 48:773–786.PubMedCrossRefGoogle Scholar
  24. Fukuda A (2005) Diuretic soothes seizures in newborns. Nat Med 11:1153–1154.PubMedCrossRefGoogle Scholar
  25. Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25:564–570.PubMedCrossRefGoogle Scholar
  26. Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85:423–493.PubMedCrossRefGoogle Scholar
  27. Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532.PubMedCrossRefGoogle Scholar
  28. Hensch TK, Fagiolini M (2005) Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res 147:115–124.PubMedCrossRefGoogle Scholar
  29. Houston CM, Bright DP, Sivilotti LG, Beato M, Smart TG (2009) Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission. J Neurosci 29:10416–10423.PubMedCrossRefGoogle Scholar
  30. Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524.PubMedCrossRefGoogle Scholar
  31. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, Mount DB (2008) Roles of the cation-chloride cotransporters in neurological disease. Nat Clin Pract Neurol 4:490–503.PubMedCrossRefGoogle Scholar
  32. Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537.PubMedCrossRefGoogle Scholar
  33. Kanold PO, Shatz CJ (2006) Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron 51:627–638.PubMedCrossRefGoogle Scholar
  34. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138.PubMedCrossRefGoogle Scholar
  35. Komatsu Y, Iwakiri M (1993) Long-term modification of inhibitory synaptic transmission in developing visual cortex. Neuroreport 4:907–910.PubMedCrossRefGoogle Scholar
  36. Kyrozis A, Reichling DB (1995) Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. J Neurosci Methods 57:27–35.PubMedCrossRefGoogle Scholar
  37. Lee HH, Walker JA, Williams JR, Goodier RJ, Payne JA, Moss SJ (2007) Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2. J Biol Chem 282:29777–29784.PubMedCrossRefGoogle Scholar
  38. Lee WC, Huang H, Feng G, Sanes JR, Brown EN, So PT, Nedivi E (2006) Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol 4:e29.PubMedCrossRefGoogle Scholar
  39. Leitch E, Coaker J, Young C, Mehta V, Sernagor E (2005) GABA type-A activity controls its own developmental polarity switch in the maturing retina. J Neurosci 25:4801–4805.PubMedCrossRefGoogle Scholar
  40. Lien CC, Mu Y, Vargas-Caballero M, Poo MM (2006) Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors. Nat Neurosci 9:372–380.PubMedCrossRefGoogle Scholar
  41. Ludwig A, Li H, Saarma M, Kaila K, Rivera C (2003) Developmental up-regulation of KCC2 in the absence of GABAergic and glutamatergic transmission. Eur J Neurosci 18:3199–3206.PubMedCrossRefGoogle Scholar
  42. Luhmann HJ, Prince DA (1991) Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 65:247–263.PubMedGoogle Scholar
  43. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21.PubMedCrossRefGoogle Scholar
  44. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215.PubMedCrossRefGoogle Scholar
  45. Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711.PubMedCrossRefGoogle Scholar
  46. McLean HA, Caillard O, Ben-Ari Y, Gaiarsa JL (1996) Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. J Physiol 496 (Pt 2):471–477.PubMedGoogle Scholar
  47. Mercado A, Mount DB, Gamba G (2004) Electroneutral cation-chloride cotransporters in the central nervous system. Neurochem Res 29:17–25.PubMedCrossRefGoogle Scholar
  48. Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J Physiol 428:61–77.PubMedGoogle Scholar
  49. Mueller AL, Taube JS, Schwartzkroin PA (1984) Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro. J Neurosci 4:860–867.PubMedGoogle Scholar
  50. Nabekura J, Ueno T, Okabe A, Furuta A, Iwaki T, Shimizu-Okabe C, Fukuda A, Akaike N (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J Neurosci 22:4412–4417.PubMedGoogle Scholar
  51. Nakanishi K, Yamada J, Takayama C, Oohira A, Fukuda A (2007) NKCC1 activity modulates formation of functional inhibitory synapses in cultured neocortical neurons. Synapse 61:138–149.PubMedCrossRefGoogle Scholar
  52. Ormond J, Woodin MA (2009a) A heterosynaptic increase in GABAergic conductance maintains the pathway specificity of disinhibition-mediated LTP. Journal of Neuroscience Submitted.Google Scholar
  53. Ormond J, Woodin MA (2009b) Disinhibition mediates a form of hippocampal long-term potentiation in area CA1. PLoS One 4:e7224.PubMedCrossRefGoogle Scholar
  54. Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem 271:16245–16252.PubMedCrossRefGoogle Scholar
  55. Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206.PubMedCrossRefGoogle Scholar
  56. Plotkin MD, Snyder EY, Hebert SC, Delpire E (1997) Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA s excitatory role in immature brain. J Neurobiol 33:781–795.PubMedCrossRefGoogle Scholar
  57. Ramirez DR, Buzzetti RA, Savage LM (2005) The role of the GABA(A) agonist muscimol on memory performance: reward contingencies determine the nature of the deficit. Neurobiol Learn Mem 84:184–191.PubMedCrossRefGoogle Scholar
  58. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255.PubMedCrossRefGoogle Scholar
  59. Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276.PubMedGoogle Scholar
  60. Saraga F, Balena T, Wolansky T, Dickson CT, Woodin MA (2008) Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus. Neuroscience 155:64–75.PubMedCrossRefGoogle Scholar
  61. Sernagor E, Young C, Eglen SJ (2003) Developmental modulation of retinal wave dynamics: shedding light on the GABA saga. J Neurosci 23:7621–7629.PubMedGoogle Scholar
  62. Sipila ST, Huttu K, Yamada J, Afzalov R, Voipio J, Blaesse P, Kaila K (2009) Compensatory enhancement of intrinsic spiking upon NKCC1 disruption in neonatal hippocampus. J Neurosci 29:6982–6988.PubMedCrossRefGoogle Scholar
  63. Staley KJ, Mody I (1992) Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. J Neurophysiol 68:197–212.PubMedGoogle Scholar
  64. Tao HW, Poo MM (2005) Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields. Neuron 45:829–836.PubMedCrossRefGoogle Scholar
  65. Titz S, Hans M, Kelsch W, Lewen A, Swandulla D, Misgeld U (2003) Hyperpolarizing inhibition develops without trophic support by GABA in cultured rat midbrain neurons. J Physiol 550:719–730.PubMedCrossRefGoogle Scholar
  66. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107.PubMedCrossRefGoogle Scholar
  67. Tyzio R, Ivanov A, Bernard C, Holmes GL, Ben-Ari Y, Khazipov R (2003) Membrane potential of CA3 hippocampal pyramidal cells during postnatal development. J Neurophysiol 90:2964–2972.PubMedCrossRefGoogle Scholar
  68. van den Pol AN, Obrietan K, Chen G (1996) Excitatory actions of GABA after neuronal trauma. J Neurosci 16:4283–4292.PubMedGoogle Scholar
  69. Vu TQ, Payne JA, Copenhagen DR (2000) Localization and developmental expression patterns of the neuronal K-Cl cotransporter (KCC2) in the rat retina. J Neurosci 20:1414–1423.PubMedGoogle Scholar
  70. Wardle RA, Poo MM (2003) Brain-derived neurotrophic factor modulation of GABAergic synapses by postsynaptic regulation of chloride transport. J Neurosci 23:8722–8732.PubMedGoogle Scholar
  71. Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl transporter activity. Neuron 39:807–820.PubMedCrossRefGoogle Scholar
  72. Xu C, Zhao MX, Poo MM, Zhang XH (2008) GABA(B) receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses. Nat Neurosci 11:1410–1418.PubMedCrossRefGoogle Scholar
  73. Xu JC, Lytle C, Zhu TT, Payne JA, Benz E, Jr., Forbush B, 3rd (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci USA 91:2201–2205.PubMedCrossRefGoogle Scholar
  74. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A (2004) Cl uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol 557:829–841.PubMedCrossRefGoogle Scholar
  75. Zhang L, Spigelman I, Carlen PL (1991) Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. J Physiol 444:25–49.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Trevor Balena
  • Brooke A. Acton
  • Melanie A. Woodin
    • 1
  1. 1.Department of Cell & Systems BiologyUniversity of TorontoTorontoCanada

Personalised recommendations