The Transmission of Technological Skills in the Palaeolithic: Insights from Metapopulation Ecology

  • Terry Hopkinson


It has become clear in recent years that developments in stone tool technologies in the Palaeolithic, and especially in the Lower and Middle Palaeolithic, cannot simply be understood in terms of social, cultural or biological evolutionary trajectories. Technologies usually regarded as characteristic of later periods in fact appear in earlier periods, but do not persist or disseminate widely through space; the sporadic occurrence of Levallois technology in the European Lower Palaeolithic is a case in point. It is suggested here that this problem might be approached through understanding the persistence (or otherwise) of technological innovations in the Palaeolithic in terms of the transmission of knowledgeable practices through networks of short-lived local populations embedded in regional metapopulations. Metapopulation ecological dynamics are considered with a view to understanding their potential to impact upon the social transmission of innovative technological practices.


Local Population Local Group Local Population Size Metapopulation Ecology Metapopulation Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allee, W.C., Emerson, A.E., Park, O., Park, T., and Schmidt, K.P. (1949). Principles of Animal Ecology, Saunders, Philadelphia.Google Scholar
  2. Ameloot-van der Heijden, N. (1993). L’industrie laminaire du niveau CA du gisement Paléolithique moyen de Riencourt-les-Baupaume (Pas de Calais). Bulletin de la Société Préhistoire Française 90: 324–327.CrossRefGoogle Scholar
  3. Baerveldt C., and Snijders, T. (1994). Influences on and from the segmentation of networks: hypotheses and tests. Social Networks 16: 213–232.CrossRefGoogle Scholar
  4. Baker, R.D. (1978). The Evolutionary Ecology of Animal Migration, Hodder and Stoughton, London.Google Scholar
  5. Barham, L. (2000). The Middle Stone Age of Zambia, South Central Africa, Western Academic and Specialist Press, Bristol.Google Scholar
  6. Binford, L.R. (1980). Willow smoke and dogs’ tails: Hunter-gatherer settlement and archaeological site formation. American Antiquity 45: 4–20.CrossRefGoogle Scholar
  7. Bordes, F. (1953). Essai de classification des industries Moustériennes. Bulletin de la Société Préhistorique Française 50: 226–235.CrossRefGoogle Scholar
  8. Bordes, F. (1968). The Old Stone Age. New York, McGraw-Hill.Google Scholar
  9. Bordes, F., and de Sonneville-Bordes, D. (1970). The significance of variability in Palaeolithic assemblages. World Archaeology 2: 61–73.CrossRefGoogle Scholar
  10. Borenstein, E., Kendal, J., and Feldman, M. (2006). Cultural niche construction in a metapopulation. Theoretical Population Biology 70: 92–104.CrossRefGoogle Scholar
  11. Bormann, F.H., and Likens, G.E. (1979). Pattern and Process in a Forested Ecosystem, Springer-Verlag, New York.Google Scholar
  12. Chapman, C.A., Wrangham, R.W., and Chapman, L.J. (1995). Ecological constraints on group-size: an analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology 36: 59–70.CrossRefGoogle Scholar
  13. Clements, F.E. (1916). Plant Succession: An Analysis of the Development of Vegetation, Carnegie Institute Publications 242, Washington.Google Scholar
  14. Clements, F.E. (1936). Nature and structure of the climax. Journal of Ecology 24: 252–284.CrossRefGoogle Scholar
  15. Conard, N.J. (1990). Laminar lithic assemblages from the last interglacial complex in northwestern Europe. Journal of Anthropological Research 46: 243–262.Google Scholar
  16. Connell, J.H., and Sousa, W.P. (1983). On the evidence needed to judge ecological stability or persistence. American Nature 121: 789–824.CrossRefGoogle Scholar
  17. Dobson, F.S. (1982). Competition for mates and predominant juvenile male dispersal in mammals. Animal Behaviour 30: 1183–1192.CrossRefGoogle Scholar
  18. Dunbar, R.I.M. (1998). The social brain hypothesis. Evolutionary Anthropology 6: 178–190.CrossRefGoogle Scholar
  19. Efferson, C., Lalive, R., Richerson, P.J., McElreath, R., and Lubelld, M. (2008). Conformists and mavericks: the empirics of frequency-dependent cultural transmission. Evolution and Human Behavior 29: 56–64.CrossRefGoogle Scholar
  20. Foley, P. (1994). Predicting extinction times from environmental stochasticity and carrying capacity. Conservation Biology 8: 124–137.CrossRefGoogle Scholar
  21. Foley, P. (1997). Extinction models for local populations. In Hanski, I., and Gilpin, M. (eds.), Metapopulation Biology, Academic Press, San Diego, pp. 215–246.CrossRefGoogle Scholar
  22. Gamble, C.S. (1995). The Earliest Occupation of Europe: The Environmental Background. In Roebroeks, W., and van Kolfschoten, T. (eds.), The Earliest Occupation of Europe, University of Leiden, Leiden, pp. 279–295.Google Scholar
  23. Goren-Inbar, N., and Belfer-Cohen, A. (1998). The technological abilities of the Levantine Mousterians: cultural and mental capacities. In Akazawa, T., Aoki, K., and Bar-Yosef, O. (eds.), Neandertals and Modern Humans in Western Asia, New York, Plenum Press, pp. 205–221.Google Scholar
  24. Grün, R., Beaumont, P.B., Tobias, P.V., and Eggins, S. (2003). On the age of Border Cave 5 human mandible. Journal of Human Evolution 45: 155–167.CrossRefGoogle Scholar
  25. Guthrie, R.D. (1984). Mosaics, allelochemics and nutrients: an ecological theory of late Pleistocene megafaunal extinctions. In Martin, P.S., and Klein, R.G. (eds.), Quaternary Extinctions: A Prehistoric Revolution, University of Arizona Press, Tucson, pp. 259–298.Google Scholar
  26. Guthrie, R.D. (1990). Frozen Fauna of the Mammoth Steppe, Chicago, Chicago University Press.Google Scholar
  27. Hanski, I. (1999). Metapopulation Ecology, Oxford University Press, Oxford.Google Scholar
  28. Henzi, S.P., Lycett, J.E., and Piper, S.E. (1997). Fission and troop size in a mountain baboon population. Animal Behaviour 53: 525–535.CrossRefGoogle Scholar
  29. Hopkinson, T. (2007a). The Transition from the Lower to the Middle Palaeolithic in Europe and the Incorporation of Difference. Antiquity 81: 294–307.Google Scholar
  30. Hopkinson, T. (2007b). The Middle Palaeolithic Leaf Points of Europe: Ecology, Knowledge and Scale, BAR International Series 1663, John and Erica Hedges, Oxford.Google Scholar
  31. Hopkinson, T., and White, M.J. (2005). The Acheulean and the handaxe: Structure and agency in the Palaeolithic. In Gamble, C., and Porr, M. (eds.), The Individual Hominid in Context, Routledge, London, pp. 13–28.Google Scholar
  32. Hopper, L.M., Spiteri, A., Lambeth, S.P., Schapiro, S.J., Horner, V., and Whiten, A. (2006). Experimental studies of traditions and underlying transmission processes in chimpanzees. Animal Behaviour 73: 1021–1032.CrossRefGoogle Scholar
  33. Hovers, E. (1998). The lithic assemblages of Amud Cave: implications for understanding the end of the Mousterian in the Levant. In Akazawa, T., Aoki, K., and Bar-Yosef, O. (eds.), Neandertals and Modern Humans in Western Asia, Plenum Press, New-York, pp. 143–163.Google Scholar
  34. Hovers, E., and Kuhn, S. (eds.) (2005). Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age, Springer-Verlag, New-York.Google Scholar
  35. Ims, R.A., and Yoccoz, N.G. (1997). Studying transfer processes in metapopulations: emigration, migration and colonization. In Hanski, I., and Gilpin, M. (eds.), Metapopulation Biology, Academic Press, San Diego, pp. 247–266.CrossRefGoogle Scholar
  36. King, T. (1996). Quantifying nonlinearity and geometry in time series of climate. Quaternary Science Reviews 15: 247–266.CrossRefGoogle Scholar
  37. Kuussaari, M., Nieminem, M., and Hanski, I. (1996). An experimental study of migration in the butterfly Melitaea cinxia. Journal of Animal Ecology 65: 791–801.CrossRefGoogle Scholar
  38. Levins, R. (1970). Extinction. Some Mathematical Questions in Biology Vol 2, , American Mathematical Society, Providence, Rhode Island, pp. 75–107.Google Scholar
  39. Lister, A.M., and Sher, A.V. (1995). Ice cores and mammoth extinction. Nature 387: 23–24.CrossRefGoogle Scholar
  40. MacArthur, R.H., and Wilson, E.O. (1967). The Theory of Island Biogeography, Princeton University Press, Princeton.Google Scholar
  41. Marks, A.E., and Monigal, K. (1995). Modeling the production of elongated blanks from the Early Levantine Mousterian at Rosh Ein Mor. In Dibble, H., and Bar Yosef, O. (eds.), The Definition and Interpretation of Levallois Technology, Prehistory Press, Madison, pp. 267–278.Google Scholar
  42. McBrearty, S., and Brooks, A.S. (2000). The revolution that wasn’t: a new interpretation of the origin of modern human behaviour. Journal of Human Evolution 39: 453–563.CrossRefGoogle Scholar
  43. Mellars, P.A. (1967). The Mousterian Succession in South-west France, Unpublished doctoral dissertation, University of Cambridge, Cambridge.Google Scholar
  44. Mellars, P.A. (1986a). A new chronology for the French Mousterian period. Nature 322: 410–411.CrossRefGoogle Scholar
  45. Mellars, P.A. (1986b). Dating and correlating the French Mousterian: reply. Nature 324: 113–114.CrossRefGoogle Scholar
  46. Mellars, P. (1988). The chronology of the southwest French Mousterian. A review of the current debate. In Otte, M. (ed.), La Technique. L’Homme de Neandertal. Liege, Universite de Liege. ERAUL, pp. 97–120.Google Scholar
  47. Mellars, P.A. (1996). The Neanderthal Legacy, Princeton University Press, Princeton.Google Scholar
  48. Mellars, P.A., and Grün, R. (1991). A comparison of the electron spin resonance and thermoluminescence dating methods: the results of ESR dating at Le Moustier (France). Cambridge Archaeological Journal 1: 269–276.CrossRefGoogle Scholar
  49. Miller, G.H., Beaumont, P.B., Deacon, H.J., Brooks, A.S., Hare, P.E., and Jull, A.J.T. (1999). Earliest modern humans in southern Africa dated by isoleucine epimerization in ostrich eggshell. Quaternary Geochronology (Quaternary Science Reviews) 18: 1548–1573.Google Scholar
  50. Munday, F.C. (1979). Levantine Mousterian technological variability: a perspective from the Negev. Paléorient 5: 87–104.CrossRefGoogle Scholar
  51. Olivieri, I., and Gouyon, P.-H. (1997). Evolution of migration rate and other traits: the metapopulation effect. In Hanski, I., and Gilpin, M. (eds.), Metapopulation Biology, Academic Press, San Diego, pp. 293–324.CrossRefGoogle Scholar
  52. Peck, T.R., and Ives, J.W. (2001). Late side-notched projectile points in the northern plains. Plains Anthropologist 46: 163–193.Google Scholar
  53. Pulliam, H.R. (1988). Sources, sinks and population regulation. American Nature 132: 652–661.CrossRefGoogle Scholar
  54. Pulliam, H.R. (1996). Sources and sinks: empirical evidence and population consequences. In Rhodes, O.E. Jr., Chester, R.K., and Smith, M.H. (eds.), Population Dynamics in Ecological Space and Time, University of Chicago Press, Chicago, pp. 45–70.Google Scholar
  55. Richter, J. (1997). Sesselfelsgrotte III. Der G-Schichten-Komplex der Sesselfelsgrotte. Zum Verständnis des Micoquien, Quartär-Bibliothek Band 7, Saarbrücken.Google Scholar
  56. Richter, J. (2002). Die 14C-daten aus der Sesselfelsgrotte und die zeitstellung Micoquien/M.M.O. Germania 80: 1–22.Google Scholar
  57. Rogers, M.J., Harris, J.W.K., and Feibel, C.S. (1994). Changing patterns of land use by Plio-Pleistocene hominids in the Lake Turkana Basin. Journal of Human Evolution 27: 139–158.CrossRefGoogle Scholar
  58. Ruxton, G.D. (1996). Dispersal and chaos in spatially-structured models; an individual-level approach. Journal of Animal Ecology 65: 161–169.CrossRefGoogle Scholar
  59. Shennan, S. (2001). Demography and cultural innovation: A model and its implications for the emergence of modern human culture. Cambridge Archaeological Journal 11: 5–16.CrossRefGoogle Scholar
  60. Short, J., and Turner, B. (1994). A test of the vegetation mosaic hypothesis: a hypothesis to explain the decline and extinction of Australian mammals. Conservation Biology 8: 439–449.CrossRefGoogle Scholar
  61. Smith, A.T., and Peacock, M.M. (1990). Conspecific attraction and the determination of metapopulation colonization rates. Conservation Biology 4: 320–323.CrossRefGoogle Scholar
  62. Soriano, S., Villa, P., and Wadley, L. (2007). Blade technology and tool forms in the Middle Stone Age of South Africa: The Howiesons Poort and post-Howiesons Poort at Rose Cottage Cave. Journal of Archaeological Science 34: 681–703.CrossRefGoogle Scholar
  63. Svoboda, J., Ložek, V., and Vlček, E. (1996). Hunters between East and West: the Paleolithic of Moravia, Plenum Press, New-York.Google Scholar
  64. Torrence, R. (ed) (1989). Time, Energy and Stone Tools, Cambridge University Press, Cambridge.Google Scholar
  65. Tryon, C.A., and McBrearty, S. (2002). Tephrostratigraphy and the Acheulian to Middle Stone Age transition in the Kapthurin Formation, Kenya. Journal of Human Evolution 42: 211–235.CrossRefGoogle Scholar
  66. Weiβmüller, W. (1995). Sesselfelsgrotte II. Die Silexartefakte der Unteren Schichten der Sesselfelsgrotte. Ein Betrag zum Problem des Moustérien, Quartär-Bibliothek Band 6, Saarbrücken.Google Scholar
  67. Whiten, A., Horner, V., and de Waal, F.B.M. (2005). Conformity to cultural norms of tool use in chimpanzees. Nature 437: 737–740.CrossRefGoogle Scholar
  68. Woodward, F.I. (1987). Climate and Plant Distribution, Cambridge University Press, Cambridge.Google Scholar
  69. Zedler, P.H., Gautier, C.R., and McMaster, G.S. (1983). Vegetation change in response to extreme events: the effect of a short interval between fires in California chapparal and coastal shrub. Ecology 64: 809–818.CrossRefGoogle Scholar
  70. Zilhão, J. (2007). The Emergence of Ornaments and Art: An Archaeological Perspective on the Origins of “Behavioral Modernity”. Journal of Archaeological Research 15: 1–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Archaeology and Ancient HistoryUniversity of LeicesterLeicesterUK

Personalised recommendations