Skip to main content
Book cover

BetaSys pp 221–240Cite as

Cell Cultivation and Sensor-Based Assays for Dynamic Measurements of Cell Vitality

  • Chapter
  • First Online:

Part of the book series: Systems Biology ((SYSTBIOL,volume 2))

Abstract

Cell cultivation is a fundamental tool in tissue engineering as well as in biomedical research. Choice of cell source and the control of cultivation parameters will determine the biological relevance and quality of the results. There are numerous biochemical and cellular assays available to test the vitality , i.e. the metabolic and functional activities , of cells in culture. Most of these assays, however, are end-point measurements and give information only for a selected time point. For non-invasive real-time measurements on cells or tissue cultures, multiparametric sensor chip test systems have been developed. They have in common: (1) sensor arrays for monitoring changes in extracellular acidification and O2 consumption , and optionally, electrodes for impedance; (2) integration of the sensor chip into cell culture containments; (3) a fluidic system to provide cells with fresh medium at regular intervals, which is a prerequisite for detecting metabolic changes and allows the addition and removal of test solutions; and (4) continuous signal monitoring in a non-invasive manner for prolonged times. The sensors are either electric (e.g. ISFETS , metal oxides , Clark-like electrodes ) or opto-chemical (fluorescent dyes), the latter being used in 24-well systems. These test systems are being applied for analysing the metabolic activity in various cell types, including pancreatic islets and β-cells, with regard to their energy metabolism and insulin secretion . The data could also serve top-down approaches in systems biology in providing functional information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATP :

adenosine triphosphate;

ELISA:

enzyme-linked immunosorbent assay

FADH2 :

flavin adenine dinucleotide-reduced

HEPES:

4-(2-hydroxyethyl)piperazine-1-ethanesulphonic acid

IDES :

interdigital electrode structures

ISFET :

ion-sensitive field effect transistor

LAPS :

light-addressable potentiometric sensors

NADH:

nicotinamide adenine dinucleotide-reduced

References

  1. Atala A (2007) Engineering tissues, organs and cells. J Tissue Eng Regen Med 1:83–96

    Article  PubMed  CAS  Google Scholar 

  2. Owicki JC, Parce JW (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosens Bioelectron 7:255–272

    Article  PubMed  CAS  Google Scholar 

  3. Freshney RI (2005) Culture of animal cells: a manual of basic techniques, 5th edn. Wiley, New York, NY

    Book  Google Scholar 

  4. Pollard JW, Walker JM (1997) Basic cell culture protocols. Humana Press, Totowa, NJ

    Book  Google Scholar 

  5. Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2004) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145:667–678

    Article  PubMed  CAS  Google Scholar 

  6. Janjic D, Maechler P, Sekine N, Bartley C, Annen AS, Wollheim CB (1999) Free radical modulation of insulin release in INS-1 cells exposed to alloxan. Biochem Pharmacol 57:639–648

    Article  PubMed  CAS  Google Scholar 

  7. Andersson A (1978) Isolated mouse pancreatic islets in culture: effects of serum and different culture media on the insulin production of the islets. Diabetologia 14:397–404

    Article  PubMed  CAS  Google Scholar 

  8. Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI (2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 5:253–264

    Article  PubMed  CAS  Google Scholar 

  9. Spacek T, Santorová J, Zacharovová K, Berková Z, Hlavatá L, Saudek F, Jezek P (2008) Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential. Int J Biochem Cell Biol 40:1522–1535

    Article  PubMed  CAS  Google Scholar 

  10. Fujimoto S, Tsuura Y, Ishida H, Tsuji K, Mukai E, Kajikawa M, Hamamoto Y, Takeda T, Yamada Y, Seino Y (2000) Augmentation of basal insulin release from rat islets by preexposure to a high concentration of glucose. Am J Physiol Endocrinol Metab 279:E927–E940

    PubMed  CAS  Google Scholar 

  11. Segu VB, Li G, Metz SA (1998) Use of a soluble tetrazolium compound to assay metabolic activation of intact [beta] cells. Metabolism 47:824–830

    Article  PubMed  CAS  Google Scholar 

  12. Van de Casteele M, Kefas BA, Cai Y, Heimberg H, Scott DK, Henquin JC, Pipeleers D, Jonas JC (2003) Prolonged culture in low glucose induces apoptosis of rat pancreatic [beta]-cells through induction of c-myc. Biochem Biophys Res Commun 312:937–944

    Article  PubMed  Google Scholar 

  13. Daoud J, Petropavlovskaia M, Rosenberg L, Tabrizian M (2010) The effect of extracellular matrix components on the preservation of human islet function in vitro. Biomaterials 31:1676–1682

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Nagira T, Tsuchiya T (2006) The effect of hyaluronic acid on insulin secretion in HIT-T15 cells through the enhancement of gap-junctional intercellular communications. Biomaterials 27:1437–1443

    Article  PubMed  CAS  Google Scholar 

  15. Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46:1029–1045

    Article  PubMed  CAS  Google Scholar 

  16. Maechler P, Carobbio S, Rubi B (2005) In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cell Biol 38:696–709

    Article  Google Scholar 

  17. Hoy M, Maechler P, Efanov AM, Wollheim CB, Berggren PO, Gromada J (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic [beta]-cells. FEBS Lett 531:199–203

    Article  PubMed  CAS  Google Scholar 

  18. Azzu V, Affourtit C, Breen EP, Parker N, Brand MD (2008) Dynamic regulation of uncoupling protein 2 content in INS-1E insulinoma cells. Biochim Biophys Acta Bioenerg 1777:1378–1383

    Article  CAS  Google Scholar 

  19. Gronostajski RM, Goldberg AL, Pardee AB (1984) The role of increased proteolysis in the atrophy and arrest of proliferation in serum-deprived fibroblasts. J Cell Physiol 121:189–198

    Article  PubMed  CAS  Google Scholar 

  20. Tejedo JR, Ramírez R, Cahuana GM, Rincón P, Sobrino F, Bedoya FJ (2001) Evidence for involvement of c-Src in the anti-apoptotic action of nitric oxide in serum-deprived RINm5F cells. Cell Signal 13:809–817

    Article  PubMed  CAS  Google Scholar 

  21. Wolf B, Kraus M, Brischwein M, Ehret R, Baumann W, Lehmann M (1998) Biofunctional hybrid structures-cell-silicon hybrids for applications in biomedicine and bioinformatics. Bioelectrochem Bioenerg 46:215–225

    Article  CAS  Google Scholar 

  22. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    Article  PubMed  CAS  Google Scholar 

  23. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng BME 17:70–71

    Article  CAS  Google Scholar 

  24. Baumann W H., Lehmann M, Schwinde A, Ehret R, Brischwein M, Wolf B (1999) Microelectronic sensor system for microphysiological application on living cells. Sens Actuator B: Chem 55:77–89

    Article  Google Scholar 

  25. Eklund SE, Snider RM, Wikswo J, Baudenbacher F, Prokop A, Cliffel DE (2006) Multianalyte microphysiometry as a tool in metabolomics and systems biology. J Electroanal Chem 587:333–339

    Article  CAS  Google Scholar 

  26. Lehmann M, Baumann W, Birschwein B, Gahle HJ, Freund I, Ehret R, Drechsler S, Palzer H, Kleintges M, Sieben U, Wolf B (2001) Simultaneous measurement of cellular respiration and acidification with a single CMOS ISFET. Biosens Electron 16:195–203

    Article  CAS  Google Scholar 

  27. Brischwein M, Motrescu E, Cabala E, Otto AM, Grothe H, Wolf B (2003) Functional cellular assays with multiparametric silicon sensor chips. Lab Chip 3:234–240

    Article  PubMed  CAS  Google Scholar 

  28. Ehret R, Baumann W, Brischwein M, Lehmann M, Henning T, Freund I, Drechsler S, Friedrich U, Hubert M-L, Motrescu E, Kob A, Palzer H, Grothe H, Wolf B (2001) Multiparametric microsensor chips for screening applications. Fresenius J Anal Chem 369:30–35

    Article  PubMed  CAS  Google Scholar 

  29. Wiest J, Stadthagen T, Schmidhuber M, Brischwein M, Ressler J, Raeder U, Grothe H, Melzer A, Wolf B (2006) Intelligent mobile lab for metabolics in environmental monitoring. Anal Lett 39:1759–1771

    Article  CAS  Google Scholar 

  30. Arain S, John GT, Krause C, Gerlach J, Wolfbeis OS, Klimant I (2006) Characterization of microtiterplates with integrated optical sensors for oxygen and pH, and their applications to enzyme activity screening, respirometry, and toxicological assays. Sens Actuator B: Chem 113:639–648

    Article  Google Scholar 

  31. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136

    Article  PubMed  CAS  Google Scholar 

  32. Lob V, Geisler T, Brischwein M, Uhl R, Wolf B (2007) Automated live cell screening system based on a 24-well-microplate with integrated micro fluidics. Med Biol Eng Comput 45:1023–1028

    Article  PubMed  CAS  Google Scholar 

  33. Roth CM, Kohen RL, Walton SP, Yarmush ML (2001) Coupling of inflammatory cytokine signaling pathways probed by measurements of extracellular acidification rate. Biophys Chem 89:1–12

    Article  PubMed  CAS  Google Scholar 

  34. Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E, Colpo P, Ehret R, Rossi F (2007) Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal Biochem 371:92–104

    Article  PubMed  CAS  Google Scholar 

  35. Otto AM, Brischwein M, Niendorf A, Henning T, Motrescu E, Wolf B (2003) Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips. Cancer Detect Prevent 27:291–296

    Article  PubMed  CAS  Google Scholar 

  36. Motrescu ER, Otto AM, Brischwein M, Zahler S, Wolf B (2005) Dynamic analysis of metabolic effects of chloroacetaldehyde and cytochalasin B on tumor cells using bioelectronic sensor chips. J Cancer Res Clin Oncol 131:683–691

    Article  PubMed  CAS  Google Scholar 

  37. Blouin M J, Zhao Y, Zakikhani M, Algire C, Piura E, Pollak M (2009) Loss of function of PTEN alters the relationship between glucose concentration and cell proliferation, increases glycolysis, and sensitizes cells to 2-deoxyglucose. Cancer Lett 289:246–253

    Google Scholar 

  38. Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Wlazer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed  CAS  Google Scholar 

  39. Georgiou C, Grintzalis K, Zervoudakis G, Papapostolou I (2008) Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Anal Bioanal Chem 391:391–403

    Article  PubMed  CAS  Google Scholar 

  40. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  PubMed  CAS  Google Scholar 

  41. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  42. Kiesslich T, Benno Oberdanner C, Krammer B, Plaetzer K (2003) Fast and reliable determination of intracellular ATP from cells cultured in 96-well microplates. J Biochem Biophys Methods 57:247–251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

In this chapter I have described some multiparametric sensor chip platforms developed by Professor B. Wolf and co-workers at the Heinz Nixdorf Chair for Medical Electronics, Technische Universität München. This work over many years has been financially supported by the Heinz Nixdorf-Stiftung, the German Ministry of Education and Research (BMBF), the Bavarian Research Foundation (Bayersiche Forschungsstiftung, BFS), the German Research Council (Deutsche Forschungsgemeinschaft, DFG), as well as industrial partners. I thank my colleagues for fruitful collaborations, with special thanks to Drs. B. Gleich, H. Grothe, and J. Wiest, to B. Becker and to Prof. B. Wolf for providing images and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Otto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Otto, A.M. (2011). Cell Cultivation and Sensor-Based Assays for Dynamic Measurements of Cell Vitality. In: Booß-Bavnbek, B., Klösgen, B., Larsen, J., Pociot, F., Renström, E. (eds) BetaSys. Systems Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6956-9_10

Download citation

Publish with us

Policies and ethics