Constraint-Driven Design Methodology: A Path to Analog Design Automation

  • Göran Jerke
  • Jens Lienig
  • Jan B. Freuer


Physical design for analog ICs has not been automated to the same degree as digital IC design, but such automation can significantly improve the productivity of circuit engineers. Analog design remains difficult to formalize due to a large amount of expert knowledge involved, such as sophisticated constraints that are specified manually and satisfied through manual layout. We therefore propose a constraint-driven design methodology – a suite of algorithms and methodologies to capture key rules governing analog layouts and to produce layouts that satisfy these rules. In this chapter, we identify major challenges in analog physical design, and relate them to constraints.We introduce techniques for constraint representation and highlight the essential components of a constraint-driven design methodology. Finally, we explain how constraint-driven design impacts a typical analog design flow, layout algorithms, and the overall physical design methodology.


Constraint Solver Constraint Logic Programming Design Context Complex Constraint Simple Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Jürgen Scheible of Robert Bosch GmbH and Ammar Nassaj of IFTE at Dresden University of Technology for the many fruitful discussions related to the topic of this chapter.


  1. 1.
    S. Abdennadher, E. Krämer, M. Saft, and M. Schmauss. JACK: A Java constraint kit. In Proc. Int. Workshop Functional and (Constraint) Logic Programming, volume 64, pages 1–17. Elsevier B.V., Amsterdam, 2001.Google Scholar
  2. 2.
    F. Baader and W. Snyder. Handbook of Automated Reasoning, volume 1, Unification Theory, pages 445–533. Elsevier Science B.V., Amsterdam, 2001.Google Scholar
  3. 3.
    R. Barták. Theory and practice of constraint propagation. In Proc. 3rd Workshop Constraint Programming for Decision and Control (CPDC), pages 7–14, 2001.Google Scholar
  4. 4.
    D. G. Cacuci, M. Ionescu-Bujor, and I. M. Navon. Sensitivity & Uncertainty Analysis: Applications to Large-Scale Systems, volume 2. Chapman & Hall/CRC, 2005.Google Scholar
  5. 5.
    Cadence Design Systems, Inc.
  6. 6.
    J. A. Carballo and S. W. Director. Constraint management for collaborative electronic design. In Proc. IEEE/ACM 36th Design Automation Conference (DAC), pages 529–534, Berlin, 1999.Google Scholar
  7. 7.
    H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E. Malavasi, A. Sangiovanni-Vincentelli, and I. Vassiliou. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits. Springer, 1999.Google Scholar
  8. 8.
    J. Cohen. Constraint logic programming languages. Commun. ACM, 33(7):52–68, 1990.CrossRefGoogle Scholar
  9. 9.
    M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The constraint logic programming language CHIP.In Proc. Int. Conf. 5th Generation Computer Systems, pages 693–702, 1988.Google Scholar
  10. 10.
    B. M. Freeman-Benson. Constraint Imperative Programming. PhD thesis, University of Washington, Department of Computer Science and Engineering, 1991.Google Scholar
  11. 11.
    J. Freuer, G. Jerke, J. Gerlach, and W. Nebel. On the verification of high-order constraint compliance in IC design. In Proc. IEEE/ACM Int. Conf. Design Automation and Test in Europe (DATE), pages 26–31, 2008.Google Scholar
  12. 12.
    Th. Frühwirth. Introducing simplification rules. Technical Report ECRC-LP-63, European Computer-Industry Research Centre, Munich, Germany, 1991.Google Scholar
  13. 13.
    Th. Frühwirth, A. Herold, V. Küchenhoff, Th. Le Provost, P. Lim, E. Monfroy, and M. Wallace. Constraint logic programming – an informal introduction. Lecture Notes In Computer Science, 636:3–35, 1992.Google Scholar
  14. 14.
    G. J. Gad El-Karim, R. S. Gyurcsik, and G. L. Bilbro. Sensitivity-driven placement of analog modules. In Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), pages 363–366, 1994.Google Scholar
  15. 15.
    V. Gerard and Th. Schiex. Solution reuse in dynamic constraint satisfaction problems. Proc. Association for the Advancement of Artificial Intelligence (AAAI), pages 307–312, 1994.Google Scholar
  16. 16.
    H. Gräb, F. Balasa, R. Castro-Lopez, Y.-W. Chang, F. V. Fernandez, P. -H. Lin, and M. Strasser. Analog layout synthesis – recent advances in topological approaches. In Proc. IEEE Int. Conf. Design Automation and Test in Europe (DATE), pages 274–279, 2009.Google Scholar
  17. 17.
    M. Grabmüller and P. Hofstedt. Turtle: A constraint imperative programming language. In Proc. 23rd SGAI Int. Conf. Innovative Techniques and Applications of Artificial Intelligence, 2003.Google Scholar
  18. 18.
    D. R. Insua. Sensitivity Analysis in Multi-Objective Decision Making. Springer, Berlin, 1990.Google Scholar
  19. 19.
    J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP() language and system. ACM Trans. Programming Languages and Systems, 14(3):339–395, July 1992.CrossRefGoogle Scholar
  20. 20.
    V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13(1): 32–44, 1992.Google Scholar
  21. 21.
    E. Malavasi and E. Charbon. Constraint transformation for IC physical design. IEEE Trans. Semiconductor Manufacturing, 12(4):386–395, 1999.CrossRefGoogle Scholar
  22. 22.
    E. Malavasi, E. Charbon, B. Arsintescu, and W. Kao. A constraint management system for IC physical design. In Proc. 11th Brazilian Symp. Integr. Circuit Design, pages 240–243, 1998.Google Scholar
  23. 23.
    E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli. Automation of IC layout with analog constraints. IEEE Trans. CAD of Integr. Circuits and Systems, 15(8):923–941, 1996.CrossRefGoogle Scholar
  24. 24.
    Mentor Graphics Inc.
  25. 25.
    P. Miliozzi, I. Vassiliou, E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli. Use of sensitivities and generalized substrate models in mixed-signal IC design. In Proc. IEEE/ACM 33rd Design Automation Conference (DAC), pages 227–232, 1996.Google Scholar
  26. 26.
    A. Nassaj, J. Lienig, and G. Jerke. A new methodology for constraint-driven layout design of analog circuits. In Proc. IEEE Int. Conf. Electronic, Circuits and Systems (ICECS), pages 996–999, 2009.Google Scholar
  27. 27.
    J.-F. Puget. A C + + implementation of CLP. Tech. rep. 94-01, ILOG SA, Gentilly Cedex, France, 1994.Google Scholar
  28. 28.
    J. A. Robinson. A machine-oriented logic based on the resolution principle. ACM, 12(1): 23–41, 1965.MATHCrossRefGoogle Scholar
  29. 29.
    R. A. Rutenbar and J. M. Cohn. Layout tools for analog ICs and mixed-signal SoCs: A survey. In Proc. IEEE/ACM Int. Symp. Physical Design (ISPD), pages 76–83, 2000.Google Scholar
  30. 30.
    J. Scheible. Constraint-driven Design – Eine Wegskizze zum Designflow der nächsten Generation (in German). In Proc. VDE ANALOG’08, 2008.Google Scholar
  31. 31.
    G. Tack. Constraint Propagation – Models, Techniques, Implementation. PhD thesis, Saarland University, 2009.Google Scholar
  32. 32.
    M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint logic programming. Technical report, IC-Parc, Imperial College, London, UK, 1997.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Dresden University of Technology, IFTEDresdenGermany

Personalised recommendations