In a search for more environmentally benign alternatives to chemical pesticides, insect neuropeptides have been suggested as ideal candidates. Neuropeptides are neuromodulators and/or neurohormones that regulate most major physiological and behavioral processes in insects. The major neuropeptide structures have been identified through peptide purification in insects (peptidomics) and insect genome projects. Neuropeptide receptors have been identified and characterized in Drosophila and similar receptors are being targeted in other insects considered to be economically detrimental pests in agriculture and forestry. Defining neuropeptide action in different insect systems has been more challenging and as a consequence, identifying unique targets for potential pest control is also a challenge. In this chapter, neuropeptide biosynthesis as well as select physiological processes are examined with a view to pest control targets. The application of molecular techniques to transform insects with neuropeptide or neuropeptide receptor genes, or knockout genes to identify potential pest control targets, is a relatively new area that offers promise to insect control. Insect immune systems may also be manipulated through neuropeptides which may aid in compromising the insects ability to defend against foreign invasion.


Juvenile Hormone Galanthus Nivalis Agglutinin Prothoracic Gland Corpus Allata Benzethonium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wetzel S, Duchesne LC, Laporte MF eds. Bioproducts from Canadian Forests: New Partnerships in the Bioeconomy. USA: Springer; 2006.Google Scholar
  2. 3.
    Chalubinski M, Kowalski ML. Endocrine disrupters-potential modulators of the immune system and allergic response. Allergy 2006; 61:1326–35.PubMedCrossRefGoogle Scholar
  3. 4.
    Ishaaya I, Kontsedalov S, Horowitz AR. Biorational insecticides: Mechanism and cross-resistance. Arch Insect Biochem Physiol 2005; 58:192–9.PubMedCrossRefGoogle Scholar
  4. 5.
    Lynd A, Ranson H, McCall PJ et al. A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae. Malar J 2005; 4:16.PubMedCrossRefGoogle Scholar
  5. 6.
    David JP, Strode C, Vontas J et al. The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci USA 2005; 102:4080–4.PubMedCrossRefGoogle Scholar
  6. 7.
    Raymond-Delpech V, Matsuda K, Sattelle BM et al. Ion channels: Molecular targets of neuroactive insecticides. Invert Neurosci 2005; 5:119–33.PubMedCrossRefGoogle Scholar
  7. 8.
    Mandavilli A. Health agency backs use of DDT against malaria. Nature 2006; 443:250–1.PubMedCrossRefGoogle Scholar
  8. 9.
    Guinovart C, Navia MM, Tanner M et al. Malaria: Burden of disease. Curr Mol Med 2006; 6:137–40.PubMedCrossRefGoogle Scholar
  9. 10.
    Dhadialla TS, Carlson GR, Le DP. New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 1998; 43:545–69.PubMedCrossRefGoogle Scholar
  10. 11.
    Ishaaya I. Introduction: Biorational insecticides-mechanism and application. Arch Insect Biochem Physiol 2003; 54:144.PubMedCrossRefGoogle Scholar
  11. 12.
    Q uistad GB, Adams ME, Scarborough RM et al. Metabolism of proctolin, a pentapeptide neurotransmitter in insects. Life Sci 1984; 34:569–76.PubMedCrossRefGoogle Scholar
  12. 13.
    Gade G, Goldsworthy GJ. Insect peptide hormones: A selective review of their physiology and potential application for pest control. Pest Manag Sci 2003; 59:1063–75.PubMedCrossRefGoogle Scholar
  13. 14.
    Nassel DR, Homberg U. Neuropeptides in interneurons of the insect brain. Cell Tissue Res 2006; 326:1–24.PubMedCrossRefGoogle Scholar
  14. 15.
    Nassel DR. Neuropeptides in the nervous system of Drosophila and other insects: Multiple roles as neuromodulators and neurohormones. Prog Neurobiol 2002; 68:1–84.PubMedCrossRefGoogle Scholar
  15. 16.
    Kastin A ed. The Handbook of Biologically Active Peptides. 1st ed. Elsevier; 2006.Google Scholar
  16. 17.
    Taghert PH, Veenstra JA. Drosophila neuropeptide signaling. Adv Genet 2003; 49:1–65.PubMedCrossRefGoogle Scholar
  17. 18.
    Stay B, Tobe SS. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 2007; 52:277–99.PubMedCrossRefGoogle Scholar
  18. 19.
    Bendena WG, Donly BC, Tobe SS. Allatostatins: A growing family of neuropeptides with structural and functional diversity. Ann N Y Acad Sci 1999; 897:311–29.PubMedCrossRefGoogle Scholar
  19. 20.
    Predel R, Wegener C. Biology of the CAPA peptides in insects. Cell Mol Life Sci 2006:1–14.Google Scholar
  20. 21.
    Isaac RE, Taylor CA, Hamasaka Y et al. Proctolin in the post-genomic era: New insights and challenges. Invert Neurosci 2004; 5:51–64.PubMedCrossRefGoogle Scholar
  21. 22.
    Sokolowski MB. NPY and the regulation of behavioral development. Neuron 2003; 39:6–8.PubMedCrossRefGoogle Scholar
  22. 23.
    Elekonich MM, Horodyski FM. Insect allatotropins belong to a family of structurally-related myoactive peptides present in several invertebrate phyla. Peptides 2003; 24:1623–32.PubMedCrossRefGoogle Scholar
  23. 24.
    Wu Q, Brown MR. Signaling and function of insulin-like peptides in insects. Annu Rev Entomol 2006; 51:1–24.PubMedCrossRefGoogle Scholar
  24. 25.
    Dow JA, Davies SA. The malpighian tubule: Rapid insights from post-genomic biology. J Insect Physiol 2006; 52:365–78.PubMedCrossRefGoogle Scholar
  25. 26.
    Gade G. Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu Rev Entomol 2004; 49:93–113.PubMedCrossRefGoogle Scholar
  26. 27.
    Coast GM, Orchard I, Phillips JE et al. Insect diuretic and antidiuretic hormones. Adv Insect Physiol 2002; 29:279–409.CrossRefGoogle Scholar
  27. 28.
    Coast GM, Garside CS. Neuropeptide control of fluid balance in insects. Ann NY Acad Sci 2005; 1040:1–8.PubMedCrossRefGoogle Scholar
  28. 29.
    Truman JW. Hormonal control of insect ecdysis: Endocrine cascades for coordinating behavior with physiology. Vitam Horm 2005; 73:1–30.PubMedCrossRefGoogle Scholar
  29. 30.
    Ewer J. Behavioral actions of neuropeptides in invertebrates: Insights from Drosophila. Horm Behav 2005; 48:418–29.PubMedCrossRefGoogle Scholar
  30. 31.
    Simonet G, Poels J, Claeys I et al. Neuroendocrinological and molecular aspects of insect reproduction. J Neuroendocrinol 2004; 16:649–59.PubMedCrossRefGoogle Scholar
  31. 32.
    Veenstra JA. Mono-and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 2000; 43:49–63.PubMedCrossRefGoogle Scholar
  32. 33.
    Baggerman G, Liu F, Wets G et al. Bioinformatic analysis of peptide precursor proteins. Ann NY Acad Sci 2005; 1040:59–65.PubMedCrossRefGoogle Scholar
  33. 34.
    Amare A, Hummon AB, Southey BR et al. Bridging neuropeptidomics and genomics with bioinformatics: Prediction of mammalian neuropeptide prohormone processing. J Proteome Res 2006; 5:1162–7.PubMedCrossRefGoogle Scholar
  34. 35.
    Kolhekar AS, Roberts MS, Jiang N et al. Neuropeptide amidation in Drosophila: Separate genes encode the two enzymes catalyzing amidation. J Neurosci 1997; 17:1363–76.PubMedGoogle Scholar
  35. 36.
    Jiang N, Kolhekar AS, Jacobs PS et al. PHM is required for normal developmental transitions and for biosynthesis of secretory peptides in Drosophila. Dev Biol 2000; 226:118–36.PubMedCrossRefGoogle Scholar
  36. 37.
    Sossin WS, Fisher JM, Scheller RH. Cellular and molecular biology of neuropeptide processing and packaging. Neuron 1989; 2:1407–17.PubMedCrossRefGoogle Scholar
  37. 38.
    Sieburth D, Ch’ng Q, Dybbs M et al. Systematic analysis of genes required for synapse structure and function. Nature 2005; 436:510–7.PubMedCrossRefGoogle Scholar
  38. 39.
    Hewes RS, Taghert PH. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 2001; 11:1126–42.PubMedCrossRefGoogle Scholar
  39. 40.
    Vanden Broeck J. Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 2001; 22:241–54.CrossRefGoogle Scholar
  40. 41.
    Hauser F, Cazzamali G, Williamson M et al. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee apis mellifera. Prog Neurobiol 2006; 80:1–19.PubMedCrossRefGoogle Scholar
  41. 42.
    Claeys I, Poels J, Simonet G et al. Insect neuropeptide and peptide hormone receptors: Current knowledge and future directions. Vitam Horm 2005; 73:217–82.PubMedCrossRefGoogle Scholar
  42. 43.
    Yamanaka N, Zitnan D, Kim YJ et al. Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proc Natl Acad Sci USA 2006; 103:8622–7.PubMedCrossRefGoogle Scholar
  43. 44.
    Wang Z, Lange AB, Orchard I. Coupling of a single receptor to two different G proteins in the signal transduction of FMRFamide-related peptides. Biochem Biophys Res Commun 1995; 212:531–8.PubMedCrossRefGoogle Scholar
  44. 45.
    Satake S, Masumura M, Ishizaki H et al. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 1997; 118:349–57.PubMedCrossRefGoogle Scholar
  45. 46.
    Sharrer B. Neuroendocrine physiology of insects. Pf lugers Arch 1952; 255:154–63.CrossRefGoogle Scholar
  46. 47.
    Scharrer B. The neurosecretory neuron in neuroendocrine regulatory mechanisms. Am Zool 1967; 7:161–9.PubMedGoogle Scholar
  47. 48.
    Clark L, Zhang JR, Tobe S et al. Proctolin: A possible releasing factor in the corpus cardiacum/corpus allatum of the locust. Peptides 2006; 27:559–66.PubMedCrossRefGoogle Scholar
  48. 49.
    Clark L, Agricola HJ, Lange AB. Proctolin-like immunoreactivity in the central and peripheral nervous systems of the locust, Locusta migratoria. Peptides 2006; 27:549–58.PubMedCrossRefGoogle Scholar
  49. 50.
    Veelaert D, Passier P, Devreese B et al. Isolation and characterization of an adipokinetic hormone release-inducing factor in locusts: The crustacean cardioactive peptide. Endocrinology 1997; 138:138–42.PubMedCrossRefGoogle Scholar
  50. 51.
    Nassel DR, Passier PC, Elekes K et al. Evidence that Locustatachykinin I is involved in release of adipokinetic hormone from locust corpora cardiaca. Regul Pept 1995; 57:297–310.PubMedCrossRefGoogle Scholar
  51. 52.
    Nassel DR, Vullings HG, Passier PC et al. Several isoforms of Locustatachykinins may be involved in cyclic AMP-mediated release of adipokinetic hormones from the locust corpora cardiaca. Gen Comp Endocrinol 1999; 113:401–12.PubMedCrossRefGoogle Scholar
  52. 53.
    Vullings HG, Ten Voorde SE, Passier PC et al. A possible role of SchistoFLRFamide in inhibition of adipokinetic hormone release from locust corpora cardiaca. J Neurocytol 1998; 27:901–13.PubMedCrossRefGoogle Scholar
  53. 54.
    Van der Horst DJ, Van Marrewijk WJ, Diederen JH. Adipokinetic hormones of insect: Release, signal transduction and responses. Int Rev Cytol 2001; 211:179–240.PubMedCrossRefGoogle Scholar
  54. 55.
    Gade G, Auerswald L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen Comp Endocrinol 2003; 132:10–20.PubMedCrossRefGoogle Scholar
  55. 56.
    Patel RT, Soulages JL, Arrese EL. Adipokinetic hormone-induced mobilization of fat body triglyceride stores in Manduca sexta: Role of TG-lipase and lipid droplets. Arch Insect Biochem Physiol 2006; 63:73–81.PubMedCrossRefGoogle Scholar
  56. 57.
    Isabel G, Martin JR, Chidami S et al. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol 2005; 288:R531–8.PubMedGoogle Scholar
  57. 58.
    Lee G, Park JH. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 2004; 167:311–23.PubMedCrossRefGoogle Scholar
  58. 59.
    Kaufmann C, Briegel H. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 2004; 29:140–53.PubMedGoogle Scholar
  59. 60.
    Oguri E, Steele JE. Lipid metabolism in the cockroach, Periplaneta americana, is activated by the hypertrehalosemic peptide, HTH-I. Peptides 2003; 24:1545–51.PubMedCrossRefGoogle Scholar
  60. 61.
    Kodrik D, Socha R, Simek P et al. A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera). Insect Biochem Mol Biol 2000; 30:489–98.PubMedCrossRefGoogle Scholar
  61. 62.
    Milde JJ, Ziegler R, Wallstein M. Adipokinetic hormone stimulates neurones in the insect central nervous system. J Exp Biol 1995; 198:1307–11.PubMedGoogle Scholar
  62. 63.
    Nassel DR. Neuropeptides, amines and amino acids in an elementary insect ganglion: Functional and chemical anatomy of the unfused abdominal ganglion. Prog Neurobiol 1996; 48:325–420.PubMedCrossRefGoogle Scholar
  63. 64.
    Roeder T. Tyramine and octopamine: Ruling behavior and metabolism. Annu Rev Entomol 2005; 50:447–77.PubMedCrossRefGoogle Scholar
  64. 65.
    Wicher D, Agricola HJ, Sohler S et al. Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity and locomotion. J Neurophysiol 2006; 95:2314–25.PubMedCrossRefGoogle Scholar
  65. 66.
    Hansen KK, Hauser F, Cazzamali G et al. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana. Biochem Biophys Res Commun 2006; 343:638–43.PubMedCrossRefGoogle Scholar
  66. 67.
    Staubli F, Jorgensen TJ, Cazzamali G et al. Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 2002; 99:3446–51.PubMedCrossRefGoogle Scholar
  67. 68.
    Park Y, Kim YJ, Adams ME. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci USA 2002; 99:11423–8.PubMedCrossRefGoogle Scholar
  68. 69.
    Kaufmann C, Brown MR. Adipokinetic hormones in the african malaria mosquito, Anopheles gambiae: Identification and expression of genes for two peptides and a putative receptor. Insect Biochem Mol Biol 2006; 36:466–81.PubMedCrossRefGoogle Scholar
  69. 70.
    Orchard I, Lange AB, Bendena WG. FMRFamide-related peptides: A multifunctional family of structurally related neuropeptides in insects. Advances in insect physiology London: Academic Press, 2001; 28:267–329.CrossRefGoogle Scholar
  70. 71.
    Meeusen T, Mertens I, Clynen E et al. Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proc Natl Acad Sci USA 2002; 99:15363–8.PubMedCrossRefGoogle Scholar
  71. 72.
    Cazzamali G, Grimmelikhuijzen CJ. Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc Natl Acad Sci USA 2002; 99:12073–8.PubMedCrossRefGoogle Scholar
  72. 73.
    Johnson E, Ringo J, Dowse H. Native and heterologous neuropeptides are cardioactive in Drosophila melanogaster. J Insect Physiol 2000; 46:1229–36.PubMedCrossRefGoogle Scholar
  73. 74.
    Merte J, Nichols R. Drosophila melanogaster FMRFamide-containing peptides: Redundant or diverse functions? Peptides 2002; 23:209–20.PubMedCrossRefGoogle Scholar
  74. 75.
    Price MD, Merte J, Nichols R et al. Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides 2002; 23:787–94.PubMedCrossRefGoogle Scholar
  75. 76.
    Hewes RS, Snowdeal EC, 3rd, Saitoe M et al. Functional redundancy of FMRFamide-related peptides at the Drosophila larval neuromuscular junction. J Neurosci 1998; 18:7138–51.PubMedGoogle Scholar
  76. 77.
    Robb S, Packman LC, Evans PD. Isolation, primary structure and bioactivity of schistoflrf-amide, a FMRF-amide-like neuropeptide from the locust, Schistocerca gregaria. Biochem Biophys Res Commun 1989; 160:850–6.PubMedCrossRefGoogle Scholar
  77. 78.
    Peeff NM, Orchard I, Lange AB. Isolation, sequence and bioactivity of PDVDHVFLRFamide and ADVGHVFLRFamide peptides from the locust central nervous system. Peptides 1994; 15:387–92.PubMedCrossRefGoogle Scholar
  78. 79.
    Lange AB, Cheung IL. The modulation of skeletal muscle contraction by FMRFamide-related peptides of the locust. Peptides 1999; 20:1411–8.PubMedCrossRefGoogle Scholar
  79. 80.
    Lange AB, Peeff NM, Orchard I. Isolation, sequence and bioactivity of FMRFamide-related peptides from the locust ventral nerve cord. Peptides 1994; 15:1089–94.PubMedCrossRefGoogle Scholar
  80. 81.
    Yamamoto D, Ishikawa S, Holman GM et al. Leucomyosuppressin, a novel insect neuropeptide, inhibits evoked transmitter release at the mealworm neuromuscular junction. Neurosci Lett 1988; 95:137–42.PubMedCrossRefGoogle Scholar
  81. 82.
    Kingan TG, Teplow DB, Phillips JM et al. A new peptide in the FMRFamide family isolated from the CNS of the hawkmoth, Manduca sexta. Peptides 1990; 11:849–56.PubMedCrossRefGoogle Scholar
  82. 83.
    Egerod K, Reynisson E, Hauser F et al. Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proc Natl Acad Sci USA 2003; 100:9808–13.PubMedCrossRefGoogle Scholar
  83. 84.
    Scholler S, Belmont M, Cazzamali G et al. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 2005; 327:29–34.PubMedCrossRefGoogle Scholar
  84. 85.
    Lange AB, Orchard I, Wang Z et al. A nonpeptide agonist of the invertebrate receptor for SchistoFLRFamide (PDVDHVFLRFamide), a member of a subfamily of insect FMRFamide-related peptides. Proc Natl Acad Sci USA 1995; 92:9250–3.PubMedCrossRefGoogle Scholar
  85. 86.
    Nachman RJ, Olender EH, Roberts VA et al. A nonpeptidal peptidomimetic agonist of the insect FLRFamide myosuppressin family. Peptides 1996; 17:313–20.PubMedCrossRefGoogle Scholar
  86. 87.
    Yip KW, Mao X, Au PY et al. Benzethonium chloride: A novel anticancer agent identified by using a cell-based small-molecule screen. Clin Cancer Res 2006; 12:5557–69.PubMedCrossRefGoogle Scholar
  87. 88.
    Takeoka G, Dao L, Wong RY et al. Identification of benzethonium chloride in commercial grapefruit seed extracts. J Agric Food Chem 2001; 49:3316–20.PubMedCrossRefGoogle Scholar
  88. 89.
    Stangier J, Hilbich C, Beyreuther K et al. Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab carcinus maenas. Proc Natl Acad Sci USA 1987; 84:575–9.PubMedCrossRefGoogle Scholar
  89. 90.
    Tublitz N, Brink D, Broadie KS et al. From behavior to molecules: An integrated approach to the study of neuropeptides. Trends Neurosci 1991; 14:254–9.PubMedCrossRefGoogle Scholar
  90. 91.
    Cheung CC, Loi PK, Sylwester AW et al. Primary structure of a cardioactive neuropeptide from the tobacco hawkmoth, Manduca sexta. FEBS Lett 1992; 313:165–8.PubMedCrossRefGoogle Scholar
  91. 92.
    Stangier J, Hilbich C, Keller J. Occurance of crustacean cardioactive peptide (CCAP) in the nervoussystem of an insect, Locusta migratoria. J Comp Physiol [B] 1989; 159:5–11.Google Scholar
  92. 93.
    Donini A, Agricola H, Lange AB. Crustacean cardioactive peptide is a modulator of oviduct contractions in Locusta migratoria. J Insect Physiol 2001; 47:277–85.PubMedCrossRefGoogle Scholar
  93. 94.
    Donini A, Ngo C, Lange AB. Evidence for crustacean cardioactive peptide-like innervation of the gut in Locusta migratoria. Peptides 2002; 23:1915–23.PubMedCrossRefGoogle Scholar
  94. 95.
    Veenstra JA. Isolation and structure of corazonin, a cardioactive peptide from the american cockroach. FEBS Lett 1989; 250:231–4.PubMedCrossRefGoogle Scholar
  95. 96.
    Hua Y, Ishibashi J, Saito H et al. Identification of [Arg7]corazonin in the silkworm, Bombyx mori and the cricket, Gryllus bimaculatus, as a factor inducing dark color in an albino strain of the locust, Locusta migratoria. J Insect Physiol 2000; 46:853–60.PubMedCrossRefGoogle Scholar
  96. 97.
    Tanaka S. Endocrine mechanisms controlling body-color polymorphism in locusts. Arch Insect Biochem Physiol 2001; 47:139–49.PubMedCrossRefGoogle Scholar
  97. 98.
    Shiga S, Davis NT, Hildebrand JG. Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol 2003; 462:275–85.PubMedCrossRefGoogle Scholar
  98. 99.
    Kim YJ, Zitnan D, Cho KH et al. Central peptidergic ensembles associated with organization of an innate behavior. Proc Natl Acad Sci USA 2006; 103:14211–6.PubMedCrossRefGoogle Scholar
  99. 100.
    Cazzamali G, Saxild N, Grimmelikhuijzen C. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun 2002; 298:31–6.PubMedCrossRefGoogle Scholar
  100. 101.
    Belmont M, Cazzamali G, Williamson M et al. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 2006; 344:160–5.PubMedCrossRefGoogle Scholar
  101. 102.
    Kim YJ, Spalovska-Valachova I, Cho KH et al. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci USA 2004; 101:6704–9.PubMedCrossRefGoogle Scholar
  102. 103.
    Rosay P, Davies SA, Yu Y et al. Cell-type specific calcium signalling in a Drosophila epithelium. J Cell Sci 1997; 110(Pt 15):1683–92.PubMedGoogle Scholar
  103. 104.
    MacPherson MR, Pollock VP, Broderick KE et al. Model organisms: New insights into ion channel and transporter function. L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster. Am J Physiol Cell Physiol 2001; 280:C394–407.PubMedGoogle Scholar
  104. 105.
    Pollock VP, McGettigan J, Cabrero P et al. Conservation of capa peptide-induced nitric oxide signalling in diptera. J Exp Biol 2004; 207:4135–45.PubMedCrossRefGoogle Scholar
  105. 106.
    Q uinlan MC, Tublitz NJ, O’Donnell MJ. Anti-diuresis in the blood-feeding insect Rhodnius prolixus stal: The peptide CAP(2b) and cyclic GMP inhibit malpighian tubule fluid secretion. J Exp Biol 1997; 200:2363–7.PubMedGoogle Scholar
  106. 107.
    Paluzzi JP, Orchard I. Distribution, activity and evidence for the release of an anti-diuretic peptide in the kissing bug Rhodnius prolixus. J Exp Biol 2006; 209:907–15.PubMedCrossRefGoogle Scholar
  107. 108.
    Radford JC, Davies SA, Dow JA. Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. J Biol Chem 2002; 277:38810–7.PubMedCrossRefGoogle Scholar
  108. 109.
    Kaufmann N, Mathai JC, Hill WG et al. Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. Am J Physiol Cell Physiol 2005; 289:C397–407.PubMedCrossRefGoogle Scholar
  109. 110.
    Eigenheer RA, Nicolson SW, Schegg KM et al. Identification of a potent antidiuretic factor acting on beetle malpighian tubules. Proc Natl Acad Sci USA 2002; 99:84–9.PubMedCrossRefGoogle Scholar
  110. 111.
    King DS, Meredith J, Wang YJ et al. Biological actions of synthetic locust ion transport peptide (ITP). Insect Biochem Mol Biol 1999; 29:11–8.PubMedCrossRefGoogle Scholar
  111. 112.
    Meredith J, Ring M, Macins A et al. Locust ion transport peptide (ITP): Primary structure, cDNA and expression in a baculovirus system. J Exp Biol 1996; 199:1053–61.PubMedGoogle Scholar
  112. 113.
    Wei Z, Baggerman G, J Nachman R et al. Sulfakinins reduce food intake in the desert locust, Schistocerca gregaria. J Insect Physiol 2000; 46:1259–65.PubMedCrossRefGoogle Scholar
  113. 114.
    Maestro JL, Aguilar R, Pascual N et al. Screening of antifeedant activity in brain extracts led to the identification of sulfakinin as a satiety promoter in the german cockroach are arthropod sulfakinins homologous to vertebrate gastrins-cholecystokinins? Eur J Biochem 2001; 268:5824–30.PubMedCrossRefGoogle Scholar
  114. 115.
    Nachman RJ, Vercammen T, Williams H et al. Aliphatic amino diacid asu functions as an effective mimic of tyr(SO3H) in sulfakinins for myotropic and food intake-inhibition activity in insects. Peptides 2005; 26:115–20.PubMedCrossRefGoogle Scholar
  115. 116.
    Kubiak TM, Larsen MJ, Burton KJ et al. Cloning and functional expression of the first Drosophila melanogaster sulfakinin receptor DSK-R1. Biochem Biophys Res Commun 2002; 291:313–20.PubMedCrossRefGoogle Scholar
  116. 117.
    Fuse M, Zhang JR, Partridge E et al. Effects of an allatostatin and a myosuppressin on midgut carbohydrate enzyme activity in the cockroach Diploptera punctata. Peptides 1999; 20:1285–93.PubMedCrossRefGoogle Scholar
  117. 118.
    Brown MR, Crim JW, Arata RC et al. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 1999; 20:1035–42.PubMedCrossRefGoogle Scholar
  118. 119.
    Stanek DM, Pohl J, Crim JW et al. Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 2002; 23:1367–78.PubMedCrossRefGoogle Scholar
  119. 120.
    Riehle MA, Garczynski SF, Crim JW et al. Neuropeptides and peptide hormones in Anopheles gambiae. Science 2002; 298:172–5.PubMedCrossRefGoogle Scholar
  120. 121.
    Pedrazzini T. Importance of NPY Y1 receptor-mediated pathways: Assessment using NPY Y1 receptor knockouts. Neuropeptides 2004; 38:267–75.PubMedCrossRefGoogle Scholar
  121. 122.
    Garczynski SF, Brown MR, Shen P et al. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 2002; 23:773–80.PubMedCrossRefGoogle Scholar
  122. 123.
    Garczynski SF, Crim JW, Brown MR. Characterization of neuropeptide F and its receptor from the african malaria mosquito, Anopheles gambiae. Peptides 2005; 26:99–107.PubMedCrossRefGoogle Scholar
  123. 124.
    Shen P, Cai HN. Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. J Neurobiol 2001; 47:16–25.PubMedCrossRefGoogle Scholar
  124. 125.
    Wu Q, Wen T, Lee G et al. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 2003; 39:147–61.PubMedCrossRefGoogle Scholar
  125. 126.
    Wu Q, Zhao Z, Shen P. Regulation of aversion to noxious food by Drosophila neuropeptide Y-and insulin-like systems. Nat Neurosci 2005; 8:1350–5.PubMedCrossRefGoogle Scholar
  126. 127.
    Veenstra JA. Isolation and identification of three RFamide-immunoreactive peptides from the mosquito Aedes aegypti. Peptides 1999; 20:31–8.PubMedCrossRefGoogle Scholar
  127. 128.
    Huang Y, Brown MR, Lee TD et al. RF-amide peptides isolated from the midgut of the corn earworm, helicoverpa zea, resemble pancreatic polypeptide. Insect Biochem Mol Biol 1998; 28:345–56.PubMedCrossRefGoogle Scholar
  128. 129.
    Spittaels K, Verhaert P, Shaw C et al. Insect neuropeptide F (NPF)-related peptides: Isolation from colorado potato beetle (Leptinotarsa decemlineata) brain. Insect Biochem Mol Biol 1996; 26:375–82.PubMedCrossRefGoogle Scholar
  129. 130.
    Schoofs L, Clynen E, Cerstiaens A et al. Newly discovered functions for some myotropic neuropeptides in locusts. Peptides 2001; 22:219–27.PubMedCrossRefGoogle Scholar
  130. 131.
    Mertens I, Meeusen T, Huybrechts R et al. Characterization of the short neuropeptide F receptor from Drosophila melanogaster. Biochem Biophys Res Commun 2002; 297:1140–8.PubMedCrossRefGoogle Scholar
  131. 132.
    Garczynski SF, Brown MR, Crim JW. Structural studies of Drosophila short neuropeptide F: Occurrence and receptor binding activity. Peptides 2006; 27:575–82.PubMedCrossRefGoogle Scholar
  132. 133.
    Lee KS, You KH, Choo JK et al. Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 2004; 279:50781–9.PubMedCrossRefGoogle Scholar
  133. 134.
    Williams CM. Third-generation pesticides. Sci Am 1967; 217:13–7.PubMedCrossRefGoogle Scholar
  134. 135.
    Truman JW. Steroid hormone secretion in insects comes of age. Proc Natl Acad Sci USA 2006; 103:8909–10.PubMedCrossRefGoogle Scholar
  135. 136.
    Hua YJ, Tanaka Y, Nakamura K et al. Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori. J Biol Chem 1999; 274:31169–73.PubMedCrossRefGoogle Scholar
  136. 137.
    Mirth C, Truman JW, Riddiford LM. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr Biol 2005; 15:1796–807.PubMedCrossRefGoogle Scholar
  137. 138.
    Woodhead AP, Stay B, Seidel SL et al. Primary structure of four allatostatins: Neuropeptide inhibitors of juvenile hormone synthesis. Proc Natl Acad Sci USA 1989; 86:5997–6001.PubMedCrossRefGoogle Scholar
  138. 139.
    Pratt GE, Farnsworth DE, Siegel NR et al. Identification of an allatostatin from adult Diploptera punctata. Biochem Biophys Res Commun 1989; 163:1243–7.PubMedCrossRefGoogle Scholar
  139. 140.
    Lorenz MW, Kellner R, Hoffmann KH. A family of neuropeptides that inhibit juvenile hormone biosynthesis in the cricket, Gryllus bimaculatus. J Biol Chem 1995; 270:21103–8.PubMedCrossRefGoogle Scholar
  140. 141.
    Jansons IS, Cusson M, McNeil JN et al. Molecular characterization of a cDNA from Pseudaletia unipuncta encoding the Manduca sexta allatostatin peptide (Mas-AST). Insect Biochem Mol Biol 1996; 26:767–73.PubMedCrossRefGoogle Scholar
  141. 142.
    Kramer SJ, Toschi A, Miller CA et al. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc Natl Acad Sci USA 1991; 88:9458–62.PubMedCrossRefGoogle Scholar
  142. 143.
    Li Y, Hernandez-Martinez S, Fernandez F et al. Biochemical, molecular and functional characterization of PISCF-allatostatin, a regulator of juvenile hormone biosynthesis in the mosquito Aedes aegypti. J Biol Chem 2006; 281:34048–55.PubMedCrossRefGoogle Scholar
  143. 144.
    Li Y, Hernandez-Martinez S, Noriega FG. Inhibition of juvenile hormone biosynthesis in mosquitoes: Effect of allatostatic head factors, PISCF-and YXFGL-amide-allatostatins. Regul Pept 2004; 118:175–82.PubMedCrossRefGoogle Scholar
  144. 145.
    Kataoka H, Toshi A, Li JP et al. Identification of an allatotropin from adult Manduca sexta. Science 1989; 243:1481–3.PubMedCrossRefGoogle Scholar
  145. 146.
    Taylor PA 3rd, Bhatt TR, Horodyski FM. Molecular characterization and expression analysis of Manduca sexta allatotropin. Eur J Biochem 1996; 239:588–96.PubMedCrossRefGoogle Scholar
  146. 147.
    Truesdell PF, Koladich PM, Kataoka H et al. Molecular characterization of a cDNA from the true armyworm Pseudaletia unipuncta encoding Manduca sexta allatotropin peptide(1). Insect Biochem Mol Biol 2000; 30:691–702.PubMedCrossRefGoogle Scholar
  147. 148.
    Tu MP, Yin CM, Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 2005; 142:347–56.PubMedCrossRefGoogle Scholar
  148. 149.
    Piulachs MD, Vilaplana L, Bartolome JM et al. Ketomethylene and methyleneamino pseudopeptide analogues of insect allatostatins inhibit juvenile hormone and vitellogenin production in the cockroach Blattella germanica. Insect Biochem Mol Biol 1997; 27:851–8.PubMedCrossRefGoogle Scholar
  149. 150.
    Garside CS, Nachman RJ, Tobe SS. Injection of dip-allatostatin or dip-allatostatin pseudopeptides into mated female Diploptera punctata inhibits endogenous rates of JH biosynthesis and basal oocyte growth. Insect Biochem Mol Biol 2000; 30:703–10.PubMedCrossRefGoogle Scholar
  150. 151.
    Garside CS, Hayes TK, Tobe SS. Degradation of dip-allatostatins by hemolymph from the cockroach, Diploptera punctata. Peptides 1997; 18:17–25.PubMedCrossRefGoogle Scholar
  151. 152.
    Abernathy RL, Teal PE, Meredith JA et al. Induction of pheromone production in a moth by topical application of a pseudopeptide mimic of a pheromonotropic neuropeptide. Proc Natl Acad Sci USA 1996; 93:12621–5.PubMedCrossRefGoogle Scholar
  152. 153.
    Nachman RJ, Teal PE, Strey A. Enhanced oral availability/pheromonotropic activity of peptidase-resistant topical amphiphilic analogs of pyrokinin/PBAN insect neuropeptides. Peptides 2002; 23:2035–43.PubMedCrossRefGoogle Scholar
  153. 154.
    Benveniste RJ, Taghert PH. Cell type-specific regulatory sequences control expression of the Drosophila FMRF-NH2 neuropeptide gene. J Neurobiol 1999; 38:507–20.PubMedCrossRefGoogle Scholar
  154. 155.
    Gauthier SA, Hewes RS. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes. J Exp Biol 2006; 209:1803–15.PubMedCrossRefGoogle Scholar
  155. 156.
    Hewes RS, Schaefer AM, Taghert PH. The cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila. Genetics 2000; 155:1711–23.PubMedGoogle Scholar
  156. 157.
    Blancafort P, Segal DJ, Barbas CF 3rd. Designing transcription factor architectures for drug discovery. Mol Pharmacol 2004; 66:1361–71.PubMedCrossRefGoogle Scholar
  157. 158.
    Urnov FD, Rebar EJ. Designed transcription factors as tools for therapeutics and functional genomics. Biochem Pharmacol 2002; 64:919–23.PubMedCrossRefGoogle Scholar
  158. 159.
    Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806–11.PubMedCrossRefGoogle Scholar
  159. 160.
    Turner CT, Davy MW, MacDiarmid RM et al. RNA interference in the light brown apple moth, epiphyas postvittana (walker) induced by double-stranded RNA feeding. Insect Mol Biol 2006; 15:383–91.PubMedCrossRefGoogle Scholar
  160. 161.
    Araujo RN, Santos A, Pinto FS et al. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 2006; 36:683–93.PubMedCrossRefGoogle Scholar
  161. 162.
    Dulcis D, Levine RB, Ewer J. Role of the neuropeptide CCAP in Drosophila cardiac function. J Neurobiol 2005; 64:259–74.PubMedCrossRefGoogle Scholar
  162. 163.
    Maestro JL, Belles X. Silencing allatostatin expression using double-stranded RNA targeted to preproallatostatin mRNA in the german cockroach. Arch Insect Biochem Physiol 2006; 62:73–9.PubMedCrossRefGoogle Scholar
  163. 164.
    Meyering-Vos M, Merz S, Sertkol M et al. Functional analysis of the allatostatin-A type gene in the cricket Gryllus bimaculatus and the armyworm Spodoptera frugiperda. Insect Biochem Mol Biol 2006; 36:492–504.PubMedCrossRefGoogle Scholar
  164. 165.
    Ma Y, Creanga A, Lum L et al. Prevalence of off-target effects in Drosophila RNA interference screens. Nature 2006; 443:359–63.PubMedCrossRefGoogle Scholar
  165. 166.
    Ohnishi A, Hull JJ, Matsumoto S. Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc Natl Acad Sci USA 2006; 103:4398–403.PubMedCrossRefGoogle Scholar
  166. 167.
    Nybakken K, Vokes SA, Lin TY et al. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the hh signaling pathway. Nat Genet 2005; 37:1323–32.PubMedCrossRefGoogle Scholar
  167. 168.
    Fitches E, Audsley N, Gatehouse JA et al. Fusion proteins containing neuropeptides as novel insect contol agents: Snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochem Mol Biol 2002; 32:1653–61.PubMedCrossRefGoogle Scholar
  168. 169.
    Fitches E, Edwards MG, Mee C et al. Fusion proteins containing insect-specific toxins as pest control agents: Snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 2004; 50:61–71.PubMedCrossRefGoogle Scholar
  169. 170.
    Down RE, Fitches EC, Wiles DP et al. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag Sci 2006; 62:77–85.PubMedCrossRefGoogle Scholar
  170. 171.
    Pham Trung N, Fitches E, Gatehouse JA. A fusion protein containing a lepidopteran-specific toxin from the south indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnol 2006; 6:18.PubMedCrossRefGoogle Scholar
  171. 172.
    Duffy SP, Young AM, Morin B et al. Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome. J Virol 2006; 80:6952–63.PubMedCrossRefGoogle Scholar
  172. 173.
    Possee RD, Barnett AL, Hawtin RE et al. Engineering baculoviruses for pest control. Pest Manag Sci 1999; 51:462–70.Google Scholar
  173. 174.
    Maeda S. Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem Biophys Res Commun 1989; 165:1177–83.PubMedCrossRefGoogle Scholar
  174. 175.
    Lee E, Lange A, Orchard I et al. Characterization and baculovirus-directed expression of a myosuppressin encoding cDNA from the true armyworm, Pseudaletia unipuncta. Peptides 2002; 23:747–56.PubMedCrossRefGoogle Scholar
  175. 176.
    O’Reilly DR, Kelly TJ, Masler EP et al. Overexpression of Bombyx mori prothoracicotropic hormone using baculovirus vectors. Insect Biochem Mol Biol 1995; 25:475–85.PubMedCrossRefGoogle Scholar
  176. 177.
    Pfeifer TA, Hegedus D, Wang YJ et al. Analysis of an insect neuropeptide, Schistocerca gregaria ion transport peptide (ITP), expressed in insect cell systems. Arch Insect Biochem Physiol 1999; 42:245–52.PubMedCrossRefGoogle Scholar
  177. 178.
    Chang JH, Choi JY, Jin BR et al. An improved baculovirus insecticide producing occlusion bodies that contain bacillus thuringiensis insect toxin. J Invertebr Pathol 2003; 84:30–7.PubMedCrossRefGoogle Scholar
  178. 179.
    Johnson JH, Bloomquist JR, Krapcho KJ et al. Novel insecticidal peptides from Tegenaria agrestis spider venom may have a direct effect on the insect central nervous system. Arch Insect Biochem Physiol 1998; 38:19–31.PubMedCrossRefGoogle Scholar
  179. 180.
    Rajendra W, Hackett KJ, Buckley E et al. Functional expression of lepidopteran-selective neurotoxin in baculovirus: Potential for effective pest management. Biochim Biophys Acta 2006; 1760:158–63.PubMedGoogle Scholar
  180. 181.
    Moto K, Kojima H, Kurihara M et al. Cell-specific expression of enhanced green fluorescence protein under the control of neuropeptide gene promoters in the brain of the silkworm, Bombyx mori, using Bombyx mori nucleopolyhedrovirus-derived vectors. Insect Biochem Mol Biol 2003; 33:7–12.PubMedCrossRefGoogle Scholar
  181. 182.
    Jiang H, Zhang JM, Wang JP et al. Genetic engineering of Periplaneta fuliginosa densovirus as an improved biopesticide. Arch Virol 2006.Google Scholar
  182. 183.
    Carlson J, Suchman E, Buchatsky L. Densoviruses for control and genetic manipulation of mosquitoes. Adv Virus Res 2006; 68:361–92.PubMedCrossRefGoogle Scholar
  183. 184.
    Handler AM. Use of the piggyBac transposon for germ-line transformation of insects. Insect Biochem Mol Biol 2002; 32:1211–20.PubMedCrossRefGoogle Scholar
  184. 185.
    Ryder E, Russell S. Transposable elements as tools for genomics and genetics in Drosophila. Brief Funct Genomic Proteomic 2003; 2:57–71.PubMedCrossRefGoogle Scholar
  185. 186.
    Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 2002; 32:1295–309.PubMedCrossRefGoogle Scholar
  186. 187.
    Mullen LM, Goldsworthy GJ. Immune responses of locusts to challenge with the pathogenic fungus metarhizium or high doses of laminarin. J Insect Physiol 2006; 52:389–98.PubMedCrossRefGoogle Scholar
  187. 188.
    Goldsworthy G, Chandrakant S, Opoku-Ware K. Adipokinetic hormone enhances nodule formation and phenoloxidase activation in adult locusts injected with bacterial lipopolysaccharide. J Insect Physiol 2003; 49:795–803.PubMedCrossRefGoogle Scholar
  188. 189.
    Mullen LM, Lightfoot ME, Goldsworthy GJ. Induced hyperlipaemia and immune challenge in locusts. J Insect Physiol 2004; 50:409–17.PubMedCrossRefGoogle Scholar
  189. 190.
    Skinner JR, Fairbairn SE, Woodhead AP et al. Allatostatin in hemocytes of the cockroach Diploptera punctata. Cell Tissue Res 1997; 290:119–28.PubMedCrossRefGoogle Scholar
  190. 191.
    Franssens V, Smagghe G, Simonet G et al 20-hydroxyecdysone and juvenile hormone regulate the laminarin-induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata. Dev Comp Immunol 2006; 30:735–40.PubMedCrossRefGoogle Scholar
  191. 192.
    Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: Facts and hypotheses. Endocr Rev 1996; 17:64–102.PubMedGoogle Scholar
  192. 193.
    Cutz E, Chan W, Track NS et al. Release of vasoactive intestinal polypeptide in mast cells by histamine liberators. Nature 1978; 275:661–2.PubMedCrossRefGoogle Scholar
  193. 194.
    Smith EM, Blalock JE. A molecular basis for interactions between the immune and neuroendocrine systems. Int J Neurosci 1988; 38:455–64.PubMedCrossRefGoogle Scholar
  194. 195.
    Weinstock JV. Production of neuropeptides by inflammatory cells within the granulomas of murine Schistosomiasis mansoni. Eur J Clin Invest 1991; 21:145–53.PubMedCrossRefGoogle Scholar
  195. 196.
    Wertheim B, Kraaijeveld AR, Schuster E et al. Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol 2005; 6:R94.PubMedCrossRefGoogle Scholar
  196. 197.
    Irving P, Ubeda JM, Doucet D et al. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol 2005; 7:335–50.PubMedCrossRefGoogle Scholar
  197. 198.
    Johansson KC, Metzendorf C, Soderhall K. Microarray analysis of immune challenged Drosophila hemocytes. Exp Cell Res 2005; 305:145–55.PubMedCrossRefGoogle Scholar
  198. 199.
    Barat-Houari M, Hilliou F, Jousset FX et al. Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels. BMC Genomics 2006; 7:160.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media. 2010

Authors and Affiliations

  • William G. Bendena
    • 1
  1. 1.Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations