Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 692))

Abstract

Neuropeptides are short sequences of amino acids that function in all multicellular organisms to communicate information between cells. The first sequence of a neuropeptide was reported in 19701 and the number of identified neuropeptides remained relatively small until the 1990s when the DNA sequence of multiple genomes revealed treasure troves of information. By blasting away at the genome, gene families, the sizes of which were previously unknown, could now be determined. This information has led to an exponential increase in the number of putative neuropeptides and their respective gene families.

The molecular biology age greatly benefited the neuropeptide field in the nematode Caenorhabditis elegans. Its genome was among the first to be sequenced2 and this allowed us the opportunity to screen the genome for neuropeptide genes. Initially, the screening was slow, as the Genefinder and BLAST programs had difficulty identifying small genes and peptides. However, as the bioinformatics programs improved, the extent of the neuropeptide gene families in C. elegans gradually emerged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chang MM, Leeman SE. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J Biol Chem 1970; 245:4784–4790.

    PubMed  CAS  Google Scholar 

  2. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998; 282:2012–2018.

    Google Scholar 

  3. Duret L, Guex N, Peitsch MC et al. New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Research 1998; 8:348–353.

    PubMed  CAS  Google Scholar 

  4. Gregoire FM, Chomiki N, Kachinskas D et al. Cloning and developmental regulation of a novel member of the insulin-like gene family in Caenorhabditis elegans. Biochem Biophys Res Commun 1998; 249:385–390.

    PubMed  CAS  Google Scholar 

  5. Kawano T, Ito Y, Ishiguro M et al. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2000; 273:431–436.

    PubMed  CAS  Google Scholar 

  6. Li W, Kennedy SG, Ruvkun G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Gene Dev 2003; 17:844–858.

    PubMed  CAS  Google Scholar 

  7. Pierce SB, Costa M, Wisotzkey R et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001; 15:672–686.

    PubMed  CAS  Google Scholar 

  8. Price DA, Greenberg MJ. Structure of a molluscan cardioexcitatory neuropeptide. Science 1977; 197:670–671.

    PubMed  CAS  Google Scholar 

  9. Dockray GJ. The expanding family of-RFamide peptides and their effects on feeding behaviour. Exp Physiol 2004; 89:229–235.

    PubMed  CAS  Google Scholar 

  10. Li C. The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131 Suppl, 2005; S109–127.

    PubMed  CAS  Google Scholar 

  11. Li C, Kim K, Nelson LS. FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Res 1999; 848:26–34.

    PubMed  CAS  Google Scholar 

  12. Nelson LS, Kim K, Memmott JE et al. FMRFamide-related gene family in the nematode, Caenorhabditis elegans. Brain Res Mol Brain Res 1998; 58:103–111.

    PubMed  CAS  Google Scholar 

  13. Li C, Nelson LS, Kim K et al. Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 1999; 897:239–252.

    PubMed  CAS  Google Scholar 

  14. Nathoo AN, Moeller RA, Westlund BA et al. Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 2001; 98:14000–14005.

    PubMed  CAS  Google Scholar 

  15. Blumenthal T. Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet 1995; 11:132–136.

    PubMed  CAS  Google Scholar 

  16. Kim K, Li C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 2004; 475:540–550.

    PubMed  CAS  Google Scholar 

  17. McVeigh P, Leech S, Mair GR et al. Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. Int J Parasitol 2005; 35:1043–1060.

    PubMed  CAS  Google Scholar 

  18. Rosoff ML, Burglin TR, Li C. Alternatively spliced transcripts of the flp-1 gene encode distinct FMRFamide-like peptides in Caenorhabditis elegans. J Neurosci 1992; 12:2356–2361.

    PubMed  CAS  Google Scholar 

  19. Couillault C, Pujol N, Reboul J et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature Immunology 2004; 5:488–494.

    PubMed  CAS  Google Scholar 

  20. Kim K. Function of a FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. PhD thesis, Boston, MA: Boston University 2003.

    Google Scholar 

  21. Sithigorngul P, Stretton AO, Cowden C. A versatile dot-ELISA method with femtomole sensitivity for detecting small peptides. J Immunol Methods 1991; 141:23–32.

    PubMed  CAS  Google Scholar 

  22. Strand FL. Neuropeptides 1999. (Cambridge, MA: MIT Press).

    Google Scholar 

  23. Sossin WS, Sweet-Cordero A, Scheller RH. Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc Natl Acad Sci USA 1990; 87:4845–4848.

    PubMed  CAS  Google Scholar 

  24. Scamuffa N, Calvo F, Chretien M et al. Proprotein convertases: lessons from knockouts. FASEB J 2006; 20:1954–1963.

    PubMed  CAS  Google Scholar 

  25. Steiner DF. The proprotein convertases. Curr Opin Chem Biol 1998; 2:31–39.

    PubMed  CAS  Google Scholar 

  26. Lindberg I, Tu B, Muller L. Cloning and functional analysis of C. elegans 7B2. DNA Cell Biol 1998; 17:727–734.

    PubMed  CAS  Google Scholar 

  27. Sieburth D, Ch’ng Q, Dybbs M et al. Systematic analysis of genes required for synapse structure and function. Nature 2005; 436:510–517.

    PubMed  CAS  Google Scholar 

  28. Husson SJ, Clynen E, Baggerman G et al. Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry. Biochem Biophys Res Commun 2005; 335:76–86.

    PubMed  CAS  Google Scholar 

  29. Marks NJ, Maule AG, Geary TG et al. APEASPFIRFamide, a novel FMRFamide-related decapeptide from Caenorhabditis elegans: structure and myoactivity. Biochem Biophys Res Commun 1997; 231:591–595.

    PubMed  CAS  Google Scholar 

  30. Marks NJ, Maule AG, Geary TG et al. KSAYMRFamide (PF3/AF8) is present in the free-living nematode, Caenorhabditis elegans. Biochem Biophys Res Commun 1998; 248:422–425.

    PubMed  CAS  Google Scholar 

  31. Marks NJ, Maule AG, Li C et al. Isolation, pharmacology and gene organization of KPSFVRFamide: a neuropeptide from Caenorhabditis elegans. Biochem Biophys Res Commun 1999; 254:222–230.

    PubMed  CAS  Google Scholar 

  32. Marks NJ, Shaw C, Halton DW et al. Isolation and preliminary biological assessment of AADGAPLIRFamide and SVPGVLRFamide from Caenorhabditis elegans. Biochem Biophys Res Commun 2001; 286:1170–1176.

    PubMed  CAS  Google Scholar 

  33. Marks NJ, Shaw C, Maule AG et al. Isolation of AF2 (KHEYLRFamide) from Caenorhabditis elegans: evidence for the presence of more than one FMRFamide-related peptide-encoding gene. Biochem Biophys Res Commun 1995; 217:845–851.

    PubMed  CAS  Google Scholar 

  34. Marder E, Calabrese RL, Nusbaum MP et al. Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis and the spiny lobster, Panulirus interruptus. J Comp Neurol 1987; 259:150–163.

    PubMed  CAS  Google Scholar 

  35. Kass J, Jacob TC, Kim P et al. The EGL-3 proprotein convertase regulates mechanosensory responses of Caenorhabditis elegans. J Neurosci 2001; 21:9265–9272.

    PubMed  CAS  Google Scholar 

  36. Husson SJ, Clynen E, Baggerman G et al. Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. J Neurochem 2006; 98:1999–2012.

    PubMed  CAS  Google Scholar 

  37. Trent C, Tsuing N, Horvitz HR. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 1983; 104:619–647.

    PubMed  CAS  Google Scholar 

  38. Thacker C, Rose AM. A look at the Caenorhabditis elegans Kex2/Subtilisin-like proprotein convertase family. Bioessays 2000; 22:545–553.

    PubMed  CAS  Google Scholar 

  39. Kimura KD, Tissenbaum HA, Liu Y et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277:942–946.

    PubMed  CAS  Google Scholar 

  40. Thacker C, Peters K, Srayko M et al. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes Dev 1995; 9:956–971.

    PubMed  CAS  Google Scholar 

  41. Thomas JH. Genetic analysis of defecation in Caenorhabditis elegans. Genetics 1990; 124:855–872.

    PubMed  CAS  Google Scholar 

  42. Reiner DJ, Thomas JH. Reversal of a muscle response to GABA during C. elegans male development. J Neurosci 1995; 15:6094–6102.

    PubMed  CAS  Google Scholar 

  43. Miller DM 3rd, Ortiz I, Berliner GC et al. Differential localization of two myosins within nematode thick filaments. Cell 1983; 34:477–490.

    PubMed  CAS  Google Scholar 

  44. MacLeod AR, Waterston RH, Fishpool RM et al. Identification of the structural gene for a myosin heavy-chain in Caenorhabditis elegans. J Mol Biol 1977; 114:133–140.

    PubMed  CAS  Google Scholar 

  45. Doi M, Iwasaki K. Regulation of retrograde signaling at neuromuscular junctions by the novel C2 domain protein AEX-1. Neuron 2002; 33:249–259.

    PubMed  CAS  Google Scholar 

  46. Jacob TC, Kaplan JM. The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J Neurosci 2003; 23:2122–2130.

    PubMed  CAS  Google Scholar 

  47. Eipper BA, Milgram SL, Husten EJ et al. Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing and routing domains. Protein Sci 1993; 2:489–497.

    PubMed  CAS  Google Scholar 

  48. Han M, Park D, Vanderzalm PJ et al. Drosophila uses two distinct neuropeptide amidating enzymes, dPAL1 and dPAL2. J Neurochem 2004; 90:129–141.

    PubMed  CAS  Google Scholar 

  49. Hall DH, Hedgecock EM. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 1991; 65:837–847.

    PubMed  CAS  Google Scholar 

  50. Schinkmann K. FMRFamide-like peptides in the nematodes Caenorhabditis elegans and Caenorhabditis vulgaris. PhD thesis, Boston, MA: Boston University 1994.

    Google Scholar 

  51. Zahn TR, Angleson JK, MacMorris MA et al. Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104. Traffic 2004; 5:544–559.

    PubMed  CAS  Google Scholar 

  52. Salio C, Lossi L, Ferrini F et al. Neuropeptides as synaptic transmitters. Cell Tissue Res 2006; 326:583–598.

    PubMed  CAS  Google Scholar 

  53. Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Progress in Neurobiology 2006; 80:177–217.

    PubMed  CAS  Google Scholar 

  54. Ahmed S, Maruyama IN, Kozma R et al. The Caenorhabditis elegans unc-13 gene product is a phospholipid-dependent high-affinity phorbol ester receptor. Biochem J 1992; 287:995–999.

    PubMed  CAS  Google Scholar 

  55. Richmond JE, Davis WS, Jorgensen EM. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 1999; 2:959–964.

    PubMed  CAS  Google Scholar 

  56. Sieburth D, Madison JM, Kaplan JM. PKC-1 regulates secretion of neuropeptides. Nat Neurosci 2007; 10:49–57.

    PubMed  CAS  Google Scholar 

  57. Hammerlund M, Watanabe S, Schuske K et al. CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons. J Cell Biol 2008; 180:483–491.

    Google Scholar 

  58. Kohn RE, Duerr JS, McManus JR et al. Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Molecular biology of the cell 2000; 11:3441–3452.

    PubMed  CAS  Google Scholar 

  59. Ann K, Kowalchyk JA, Loyet KM et al. Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem 1997; 272:19637–19640.

    PubMed  CAS  Google Scholar 

  60. Speese S, Petrie M, Schuske K et al. UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J Neurosci 2007; 27:6150–6162.

    PubMed  CAS  Google Scholar 

  61. Cai T, Fukushige T, Notkins AL et al. Insulinoma-Associated Protein IA-2, a vesicle transmembrane protein, genetically interacts with UNC-31/CAPS and affects Neurosecretion in Caenorhabditis elegans. J Neurosci 2004; 24:3115–3124.

    PubMed  CAS  Google Scholar 

  62. Grishanin RN, Klenchin VA, Loyet KM et al. Membrane association domains in Ca2+-dependent activator protein for secretion mediate plasma membrane and dense-core vesicle binding required for Ca2+-dependent exocytosis. J Biol Chem 2002; 277:22025–22034.

    PubMed  CAS  Google Scholar 

  63. Renden R, Berwin B, Davis W et al. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron 2001; 31:421–437.

    PubMed  CAS  Google Scholar 

  64. Fares H, Grant B. Deciphering endocytosis in Caenorhabditis elegans. Traffic 2002; 3:11–19.

    PubMed  Google Scholar 

  65. Rosoff ML, Doble KE, Price DA et al. The FLP-1 propeptide is processed into multiple, highly similar FMRFamide-like peptides in Caenorhabditis elegans. Peptides 1993; 14:331–338.

    PubMed  CAS  Google Scholar 

  66. Husson SJ, Schoofs L. Altered neuropeptide profile of Caenorhabditis elegans lacking the chaperone protein 7B2 as analyzed by mass spectrometry. FEBS Lett 2007; 581:4288–4292.

    PubMed  CAS  Google Scholar 

  67. Cowden C, Stretton AO. AF2, an Ascaris neuropeptide: isolation, sequence and bioactivity. Peptides 1993; 14:423–430.

    PubMed  CAS  Google Scholar 

  68. Cowden C, Stretton AO. Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum. Peptides 1995; 16:491–500.

    PubMed  CAS  Google Scholar 

  69. Cowden C, Stretton AO, Davis RE. AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 1989; 2:1465–1473.

    PubMed  CAS  Google Scholar 

  70. Yew JY, Kutz KK, Dikler S et al. Mass spectrometric map of neuropeptide expression in Ascaris suum. J Comp Neurol 2005; 488:396–413.

    PubMed  CAS  Google Scholar 

  71. Keating CD, Holden-Dye L, Thorndyke MC et al. The FMRFamide-like neuropeptide AF2 is present in the parasitic nematode Haemonchus contortus. Parasitology 1995; 111 ( Pt 4), 515–521.

    PubMed  CAS  Google Scholar 

  72. Marks NJ, Sangster NC, Maule AG et al. Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus. Mol Biochem Parasitol 1999; 100:185–194.

    PubMed  CAS  Google Scholar 

  73. Geary TG, Price DA, Bowman JW et al. Two FMRFamide-like peptides from the free-living nematode Panagrellus redivivus. Peptides 1992; 13:209–214.

    PubMed  CAS  Google Scholar 

  74. Maule AG, Geary TG, Bowman JW et al. Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from Ascaris suum. Invert Neurosci 1995; 1:255–265.

    PubMed  CAS  Google Scholar 

  75. Maule AG, Shaw C, Bowman JW et al. The FMRFamide-like neuropeptide AF2 (Ascaris suum) is present in the free-living nematode, Panagrellus redivivus (Nematoda, Rhabditida). Parasitology 1994; 109 (Pt 3):351–356.

    PubMed  CAS  Google Scholar 

  76. Maule AG, Shaw C, Bowman JW et al. KSAYMRFamide: a novel FMRFamide-related heptapeptide from the free-living nematode, Panagrellus redivivus, which is myoactive in the parasitic nematode, Ascaris suum. Biochem Biophys Res Commun 1994; 200:973–980.

    PubMed  CAS  Google Scholar 

  77. Simmer F, Tijsterman M, Parrish S et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 2002; 12:1317–1319.

    PubMed  CAS  Google Scholar 

  78. Schmitz C, Kinge P, Hutter H. Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc Natl Acad Sci USA 2007; 104:834–839.

    PubMed  CAS  Google Scholar 

  79. Tavernarakis N, Wang SL, Dorovkov M et al. Heritable and inducible genetic interference by doublestranded RNA encoded by transgenes. Nat Genet 2000; 24:180–183.

    PubMed  CAS  Google Scholar 

  80. Cassada RC, Russell RL. The dauerlarva, post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 1975; 46:326–342.

    PubMed  CAS  Google Scholar 

  81. Johnson TE, Mitchell DH, Kline S et al. Arresting development arrests aging in the nematode Caenorhabditis elegans. Mechanisms of ageing and development 1984; 28:23–40.

    PubMed  CAS  Google Scholar 

  82. Riddle DL, Albert PS. Genetic and environmental regulation of dauer larva development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. C. elegans II. New York: Cold Spring Harbor Laboratory Press, 1997:739–768.

    Google Scholar 

  83. Thomas JH, Birnby DA, Vowels JJ. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 1993; 134:1105–1117.

    PubMed  CAS  Google Scholar 

  84. Kao G, Nordenson C, Still M et al. ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 2007; 128:577–587.

    PubMed  CAS  Google Scholar 

  85. Kenyon C, Chang J, Gensch E et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366:461–464.

    PubMed  CAS  Google Scholar 

  86. Gems D, Sutton AJ, Sundermeyer ML et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998; 150:129–155.

    PubMed  CAS  Google Scholar 

  87. Dlakic M. A new family of putative insulin receptor-like proteins in C. elegans. Curr Biol 2002; 12: R155–157.

    PubMed  CAS  Google Scholar 

  88. Bargmann CI, Horvitz HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 1991; 251:1243–1246.

    PubMed  CAS  Google Scholar 

  89. Malone EA, Thomas JH. A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. Genetics 1994; 136:879–886.

    PubMed  CAS  Google Scholar 

  90. Kodama E, Kuhara A, Mohri-Shiomi A et al. Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes Dev 2006; 20:2955–2960.

    PubMed  CAS  Google Scholar 

  91. Hedgecock EM, Russell RL. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 1975; 72:4061–4065.

    PubMed  CAS  Google Scholar 

  92. Mori I, Ohshima Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 1995; 376:344–348.

    PubMed  CAS  Google Scholar 

  93. Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000; 26:619–631.

    PubMed  CAS  Google Scholar 

  94. White JG, Southgate E, Thomson JN et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986; 314:1–340.

    Google Scholar 

  95. Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci USA 1973; 70:817–821.

    PubMed  CAS  Google Scholar 

  96. Saeki S, Yamamoto M, Iino Y. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol 2001; 204:1757–1764.

    PubMed  CAS  Google Scholar 

  97. Tomioka M, Adachi T, Suzuki H et al. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 2006; 51:613–625.

    PubMed  CAS  Google Scholar 

  98. Schinkmann K, Li C. Localization of FMRFamide-like peptides in Caenorhabditis elegans. J Comp Neurol 1992; 316:251–260.

    PubMed  CAS  Google Scholar 

  99. Nelson LS, Rosoff ML et al. Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 1998; 281:1686–1690.

    PubMed  CAS  Google Scholar 

  100. Ringstad N, Horvitz HR FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nature Neuroscience 2008; 11:1168–1176.

    PubMed  CAS  Google Scholar 

  101. Alfonso A, Grundahl K, Duerr JS et al. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 1993; 261:617–619.

    PubMed  CAS  Google Scholar 

  102. McIntire SL, Jorgensen E, Kaplan J et al. The GABAergic nervous system of Caenorhabditis elegans. Nature 1993; 364:337–341.

    PubMed  CAS  Google Scholar 

  103. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974; 77:71–94.

    PubMed  CAS  Google Scholar 

  104. Duerr JS, Gaskin J et al. Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoamines. American J Physiology 2001; 280:C1616–1622.

    CAS  Google Scholar 

  105. Waggoner LE, Hardaker LA, Golik S et al. Effect of a neuropeptide gene on behavioral states in Caenorhabditis elegans egg-laying. Genetics 2000; 154:1181–1192.

    PubMed  CAS  Google Scholar 

  106. Cohen M, Reale V, Olofsson B et al. Coordinated regulation of foraging and metabolism in C. elegans by RFfamide neuropeptide signaling. Cell Metab 2009; 9:375–385.

    PubMed  CAS  Google Scholar 

  107. Janssen T, Husson SJ, Lindemans M et al. Functional characterization of three G protein-coupled receptors for pigment dispersing factors in Caenorhabditis elegans. J Biol Chem 2008; 283:15241–15249.

    PubMed  CAS  Google Scholar 

  108. Park SK, Link CD, Johnson TE Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans. FASEB J 2009. [Epub ahead of print].

    Google Scholar 

  109. Muir RE, Tan M-W. Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: Characterization of a novel host-pathogen interaction. Appl Environ Microbiol 2008; 74:4185–4198.

    PubMed  CAS  Google Scholar 

  110. Pujol N, Cypowyu S, Ziegler K et al. Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol 2008; 18:481–489.

    PubMed  CAS  Google Scholar 

  111. Styer KL, Singh V, Macosko E et al. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 2008; 322:460–464.

    PubMed  CAS  Google Scholar 

  112. Janssen T, Husson SJ, Meelkop E et al. Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway in Caenorhabditis elegans. J Neurochem 2009; 111:228–41.

    PubMed  CAS  Google Scholar 

  113. Husson SJ, Janssen T, Baggerman G et al. Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 2007; 102:246–60.

    PubMed  CAS  Google Scholar 

  114. Lindemans M, Janssen T, Husson SJ et al. A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans. Biochem Biophys Res Commun 2009; 379:760–764.

    PubMed  CAS  Google Scholar 

  115. McVeigh P, Alexander-Bowman S, Veal E et al. Neuropeptide-like protein diversity in phylum Nematoda. Int J Parasitol 2008; 38:1493–1503.

    CAS  Google Scholar 

  116. Nguyen M, Alfonso A, Johnson CD et al. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 1995; 140:527–535.

    PubMed  CAS  Google Scholar 

  117. Robertson HM. Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement and intron loss. Genome Research 1998; 8:449–463.

    PubMed  CAS  Google Scholar 

  118. Robertson HM. The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses. Genome Research 2000; 10:192–203.

    PubMed  CAS  Google Scholar 

  119. Robertson HM. Updating the str and srj (stl) families of chemoreceptors in Caenorhabditis nematodes reveals frequent gene movement within and between chromosomes. Chem Senses 2001; 26:151–159.

    PubMed  CAS  Google Scholar 

  120. Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science 1998; 282:2028–2033.

    PubMed  CAS  Google Scholar 

  121. Keating CD, Kriek N, Daniels M et al. Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 2003; 13:1715–1720.

    PubMed  CAS  Google Scholar 

  122. Bonini JA, Jones KA, Adham N et al Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem 2000; 275:39324–39331.

    PubMed  CAS  Google Scholar 

  123. Cazzamali G, Grimmelikhuijzen CJ. Molecular cloning and functional expression of the first insect FMRFamide receptor. Proc Natl Acad Sci USA 2002; 99:12073–12078.

    PubMed  CAS  Google Scholar 

  124. Duttlinger A, Mispelon M, Nichols R. The structure of the FMRFamide receptor and activity of the cardioexcitatory neuropeptide are conserved in mosquito. Neuropeptides 2003; 37:120–126.

    PubMed  CAS  Google Scholar 

  125. Meeusen T, Mertens I, Clynen E et al. Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proc Natl Acad Sci USA 2002; 99:15363–15368.

    PubMed  CAS  Google Scholar 

  126. Tensen CP, Cox KJ, Smit AB et al. The lymnaea cardioexcitatory peptide (LyCEP) receptor: a G-protein-coupled receptor for a novel member of the RFamide neuropeptide family. J Neurosci 1998; 18:9812–9821.

    PubMed  CAS  Google Scholar 

  127. Lingueglia E, Champigny G, Lazdunski M et al. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 1995; 378:730–733.

    PubMed  CAS  Google Scholar 

  128. Kubiak TM, Larsen MJ, Nulf SC et al. Differential activation of “social” and “solitary” variants of the Caenorhabditis elegans G protein-coupled receptor NPR-1 by its cognate ligand AF9. J Biol Chem 2003; 278:33724–33729.

    PubMed  CAS  Google Scholar 

  129. Kubiak TM, Larsen MJ, Zantello MR et al. Functional annotation of the putative orphan Caenorhabditis elegans G-protein-coupled receptor C10C6.2 as a FLP15 peptide receptor. J Biol Chem 2003; 278:42115–42120.

    PubMed  CAS  Google Scholar 

  130. Lowery DE, Geary TG, Kubiak TM et al. G protein-coupled receptor-like receptors and modulators thereof. (United States: Pharmacia & Upjohn Company) 2003.

    Google Scholar 

  131. Mertens I, Meeusen T, Janssen T et al. Molecular characterization of two G protein-coupled receptor splice variants as FLP2 receptors in Caenorhabditis elegans. Biochem Biophys Res Commun 2005; 330:967–974.

    PubMed  CAS  Google Scholar 

  132. Mertens I, Vandingenen A, Meeusen T et al. Functional characterization of the putative orphan neuropeptide G-protein coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Lett 2004; 573:55–60.

    PubMed  CAS  Google Scholar 

  133. Mertens I, Clinckspoor I, Janssen T et al. FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1. Peptides 2006; 27:1291–1296.

    PubMed  CAS  Google Scholar 

  134. de Bono M, Bargmann CI. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 1998; 94:679–689.

    PubMed  Google Scholar 

  135. Davies AG, Bettinger JC, Thiele TR et al. Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron 2004; 42:731–743.

    PubMed  CAS  Google Scholar 

  136. Cheung BH, Arellano-Carbajal F, Rybicki I et al. Soluble guanylate cyclases act in neurons exposed to the body fluid to promote C. elegans aggregation behavior. Curr Biol 2004; 14:1105–1111.

    PubMed  CAS  Google Scholar 

  137. Morton DB, Hudson ML, Waters E et al. Soluble guanylyl cyclases in Caenorhabditis elegans: NO is not the answer. Curr Biol 1999; 9:R546–547.

    PubMed  CAS  Google Scholar 

  138. Gray JM, Karow DS, Lu H et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 2004; 430:317–322.

    PubMed  CAS  Google Scholar 

  139. Rogers C, Reale V, Kim K et al. Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 2003; 6:1178–1185.

    PubMed  CAS  Google Scholar 

  140. Dossey AT, Reale V, Chatwin H et al. NMR analysis of Caenorhabditis elegans FLP-18 neuropeptides: implications for NPR-1 activation. Biochemistry 2006; 45:7586–7597.

    PubMed  CAS  Google Scholar 

  141. Papaioannou S, Marsden D, Franks CJ et al. Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 2005; 65:304–319.

    PubMed  CAS  Google Scholar 

  142. Rogers CM, Franks CJ, Walker RJ et al. Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine and FMRFamide-like neuropeptides. J Neurobiol 2001; 49:235–244.

    PubMed  CAS  Google Scholar 

  143. Cowden C, Sithigorngul P, Brackley P et al. Localization and differential expression of FMRFamide-like immunoreactivity in the nematode Ascaris suum. J Comp Neurol 1993; 333:455–468.

    PubMed  CAS  Google Scholar 

  144. McVeigh P, Geary TG, Marks NJ et al. The FLP-side of nematodes. Trends Parasitol 2006; 22:385–396.

    PubMed  CAS  Google Scholar 

  145. Bowman JW, Friedman AR, Thompson DP et al. Structure-activity relationships of an inhibitory nematode FMRFamide-related peptide, SDPNFLRFamide (PF1), on Ascaris suum muscle. Int J Parasitol 2002; 32:1765–1771.

    PubMed  CAS  Google Scholar 

  146. Fellowes RA, Maule AG, Marks NJ et al. Modulation of the motility of the vagina vera of Ascaris suum in vitro by FMRF amide-related peptides. Parasitology 1998; 116:(Pt 3)277–287.

    PubMed  CAS  Google Scholar 

  147. Moffett CL, Beckett AM, Mousley A et al. The ovijector of Ascaris suum: multiple response types revealed by Caenorhabditis elegans FMRFamide-related peptides. Int J Parasitol 2003; 33:859–876.

    PubMed  CAS  Google Scholar 

  148. Trailovic SM, Clark CL, Robertson AP et al. Brief application of AF2 produces long lasting potentiation of nAChR responses in Ascaris suum. Mol Biochem Parasitol 2005; 139:51–64.

    PubMed  CAS  Google Scholar 

  149. Brownlee D, Holden-Dye L, Walker R. The range and biological activity of FMRFamide-related peptides and classical neurotransmitters in nematodes. Adv Parasitol 2000; 45:109–180.

    PubMed  CAS  Google Scholar 

  150. Brownlee DJ, Fairweather I. Exploring the neurotransmitter labyrinth in nematodes. Trends Neurosci 1999; 22:16–24.

    PubMed  CAS  Google Scholar 

  151. Day TA, Maule AG. Parasitic peptides! The structure and function of neuropeptides in parasitic worms. Peptides 1999; 20:999–1019.

    PubMed  CAS  Google Scholar 

  152. Bowman JW, Friedman AR, Thompson DP et al. Structure-activity relationships of KNEFIRFamide (AF1), a nematode FMRFamide-related peptide, on Ascaris suum muscle. Peptides 1996; 17:381–387.

    PubMed  CAS  Google Scholar 

  153. Davis RE, Stretton AO. Structure-activity relationships of 18 endogenous neuropeptides on the motor nervous system of the nematode Ascaris suum. Peptides 2001; 22:7–23.

    PubMed  CAS  Google Scholar 

  154. Kimber MJ, McKinney S, McMaster S et al. flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 2007; 21:1233–1243.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Li, C., Kim, K. (2010). Neuropeptide Gene Families in Caenorhabditis elegans . In: Geary, T.G., Maule, A.G. (eds) Neuropeptide Systems as Targets for Parasite and Pest Control. Advances in Experimental Medicine and Biology, vol 692. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6902-6_6

Download citation

Publish with us

Policies and ethics