Advertisement

Evaluation of Protein Structure Prediction Methods: Issues and Strategies

  • Anna Tramontano
  • Domenico Cozzetto
Chapter

Abstract

The Internet is swarmed with tools for predicting protein structure from sequence, and it also provides access to databases of protein three-dimensional models. This wealth of methods and repositories can be very useful to design experiments and interpret their results, as testified by several examples in the literature. On the other side, however, life scientists need to select the most appropriate resource for their problem of interest. The structural bioinformatics community has devised worldwide initiatives – which are described in this chapter – to objectively monitor the state of the art in the field. The challenges in assessing the accuracy of structural models, in comparing different approaches, and in detecting and measuring the extent of progress over time will be discussed here together with some of the solutions adopted by the community. Finally, we will briefly describe a few examples of protein structure analysis and prediction that have been instrumental in shedding light on relevant biomedical problems.

Keywords

Protein Data Bank Experimental Structure Protein Structure Prediction Fold Recognition Model Repository 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge support from the Italian Ministry of Labour, Health, and Social Policies, contract no.onc_ord 25/07. This work was partially supported by KAUST (award no. KUK-I1-012-43) and MIUR (FIRB Rete Italiana di Proteomica and Italbionet).

References

  1. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedCrossRefGoogle Scholar
  2. Archie JG, Paluszewski M, Karplus K (2009) Applying undertaker to quality assessment. Proteins 77 (Suppl 9):191–195Google Scholar
  3. Benkert P, Tosatto SC, Schwede T (2009) Global and local model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust. Proteins 77 (Suppl 9):173–180Google Scholar
  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  5. Bertonati C, Tramontano A (2007) A model of the complex between the PfEMP1 malaria protein and the human ICAM-1 receptor. Proteins 69:215–222PubMedCrossRefGoogle Scholar
  6. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day, N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu, M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi, HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai, C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei, CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu, Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou, M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim, J, Bhinge AA, Jiang N, Liu, J, Yao, F, Vega VB, Lee CW, Ng P, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Xu M, Haidar JN, Yu Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh, K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816PubMedCrossRefGoogle Scholar
  7. Brin S, Page L (1998) The Anatomy of a Large-Scale Hypertextual Web Search Engine. Seventh International World-Wide Web Conference (WWW 1998)Google Scholar
  8. Bystroff C, Simons KT, Han KF, Baker D (1996) Local sequence-structure correlations in proteins. Curr Opin Biotechnol 7:417–421PubMedCrossRefGoogle Scholar
  9. Castrignano T, De Meo, PD, Cozzetto D, Talamo IG, Tramontano A (2006) The PMDB protein model database. Nucleic Acids Res 34:D306–309PubMedCrossRefGoogle Scholar
  10. Chakravorty SJ, Craig A (2005) The role of ICAM-1 in Plasmodium falciparum cytoadherence. Eur J Cell Biol 84:15–27PubMedCrossRefGoogle Scholar
  11. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351PubMedCrossRefGoogle Scholar
  12. Cheng J, Wang Z, Tegge AN, Eickholt J (2009) Prediction of global and local quality of CASP8 models by MULTICOM series. Proteins 77 (Suppl 9):181–184Google Scholar
  13. Chothia C (1992) Proteins. One thousand families for the molecular biologist. Nature 357:543–544PubMedCrossRefGoogle Scholar
  14. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. Embo J 5:823–826PubMedGoogle Scholar
  15. Cozzetto D, Kryshtafovych A, Ceriani M, Tramontano A (2007) Assessment of predictions in the model quality assessment category. Proteins 69 Suppl 8:175–183CrossRefGoogle Scholar
  16. Cozzetto D, Kryshtafovych A, Fidelis K, Moult J, Rost B, Tramontano A (2009a) Evaluation of template-based models in CASP8 with standard measures. Proteins 77 (Suppl 9):18–28Google Scholar
  17. Cozzetto D, Kryshtafovych A, Tramontano A (2009b) Evaluation of CASP8 model quality predictions. Proteins 77 (Suppl 9):157–166Google Scholar
  18. Cozzetto D, Tramontano A (2005) Relationship between multiple sequence alignments and quality of protein comparative models. Proteins 58:151–157PubMedCrossRefGoogle Scholar
  19. Cozzetto D, Tramontano A (2008) Advances and pitfalls in protein structure prediction. Curr Protein Pept Sci 9:567–577PubMedCrossRefGoogle Scholar
  20. De Francesco R, Urbani A, Nardi MC, Tomei L, Steinkuhler C, Tramontano A (1996) A zinc binding site in viral serine proteinases. Biochemistry 35:13282–13287PubMedCrossRefGoogle Scholar
  21. Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404PubMedCrossRefGoogle Scholar
  22. Fischer D (2003) 3D-SHOTGUN: a novel cooperative fold-recognition meta-predictor. Proteins 51:434–441PubMedCrossRefGoogle Scholar
  23. Flores TP, Orengo CA, Moss DS, Thornton JM (1993) Comparison of conformational characteristics in structurally similar protein pairs. Protein Sci 2:1811–1826PubMedCrossRefGoogle Scholar
  24. Ginalski K, Elofsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018PubMedCrossRefGoogle Scholar
  25. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299PubMedCrossRefGoogle Scholar
  26. Han KF, Baker D (1996) Global properties of the mapping between local amino acid sequence and local structure in proteins. Proc Natl Acad Sci USA 93:5814–5818PubMedCrossRefGoogle Scholar
  27. He Y, Chen Y, Alexander P, Bryan PN, Orban J (2008) NMR structures of two designed proteins with high sequence identity but different fold and function. Proc Natl Acad Sci USA 105:14412–14417PubMedCrossRefGoogle Scholar
  28. Hirschman L, Yeh A, Blaschke C, Valencia A (2005) Overview of BioCreAtIvE: critical assessment of information extraction for biology. BMC Bioinformatics 6 (Suppl 1):S1PubMedCrossRefGoogle Scholar
  29. Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272PubMedCrossRefGoogle Scholar
  30. Hubbard TJ (1999) RMS/coverage graphs: a qualitative method for comparing three-dimensional protein structure predictions. Proteins (Suppl 3):15–21Google Scholar
  31. Hubbard TJ, Blundell TL (1987) Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modelling. Protein Eng 1:159–171PubMedCrossRefGoogle Scholar
  32. Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ (2003) CAPRI: a critical assessment of predicted interactions. Proteins 52:2–9PubMedCrossRefGoogle Scholar
  33. Keedy DA, Williams CJ, Headd JJ, Arendall WB 3rd, Chen VB, Kapral GJ, Gillespie RA, Block JN, Zemla A, Richardson DC, Richardson JS (2009) The other 90% of the protein: assessment beyond the calphas for CASP8 template-based and high-accuracy models. Proteins 77 (Suppl 9):29–49Google Scholar
  34. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–392PubMedCrossRefGoogle Scholar
  35. Kim JL, Morgenstern KA, Lin C, Fox T, Dwyer MD, Landro JA, Chambers SP, Markland W, Lepre CA, O’Malley ET, Harbeson SL, Rice CM, Murcko MA, Caron PR, Thomson JA (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355PubMedCrossRefGoogle Scholar
  36. Kinch LN, Wrabl JO, Krishna SS, Majumdar I, Sadreyev RI, Qi Y, Pei J, Cheng, H Grishin NV (2003) CASP5 assessment of fold recognition target predictions. Proteins 53 (Suppl 6):395–409PubMedCrossRefGoogle Scholar
  37. Kopp J, Bordoli L, Battey JN, Kiefer F, Schwede T (2007) Assessment of CASP7 predictions for template-based modeling targets. Proteins 69 (Suppl 8):38–56PubMedCrossRefGoogle Scholar
  38. Kraemer SM, Smith JD (2006) A family affair: var genes PfEMP1 binding and malaria disease. Curr Opin Microbiol 9:374–380PubMedCrossRefGoogle Scholar
  39. Kryshtafovych A, Fidelis K (2009) Protein structure prediction and model quality assessment. Drug Discov Today 14:386–393PubMedCrossRefGoogle Scholar
  40. Kryshtafovych A, Fidelis K, Moult J (2007a) Progress from CASP6 to CASP7. Proteins 69 (Suppl 8):194–207PubMedCrossRefGoogle Scholar
  41. Kryshtafovych A, Fidelis K, Moult J (2009a) CASP8 results in context of previous experiments. Proteins 77 (Suppl 9):217–228Google Scholar
  42. Kryshtafovych A, Krysko O, Daniluk P, Dmytriv Z, Fidelis K (2009b) Protein structure prediction center in CASP8. Proteins 77 (Suppl 9):5–9Google Scholar
  43. Kryshtafovych A, Prlic A, Dmytriv Z, Daniluk P, Milostan M, Eyrich V, Hubbard T, Fidelis K (2007b) New tools and expanded data analysis capabilities at the Protein Structure Prediction Center. Proteins 69 (Suppl 8):19–26PubMedCrossRefGoogle Scholar
  44. Kryshtafovych A, Venclovas C, Fidelis K, Moult J (2005) Progress over the first decade of CASP experiments. Proteins 61 (Suppl 7):225–236PubMedCrossRefGoogle Scholar
  45. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee, HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu, J, Hood L, Rowen L, Madan A, Qin, S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  46. Larsson P, Skwark MJ, Wallner B. Elofsson A (2009) Assessment of global and local model quality in CASP8 using Pcons and ProQ. Proteins 77 (Suppl 9):167–172Google Scholar
  47. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486PubMedCrossRefGoogle Scholar
  48. Levitt M, Gerstein M (1998) A unified statistical framework for sequence comparison and structure comparison. Proc Natl Acad Sci USA 95:5913–5920PubMedCrossRefGoogle Scholar
  49. Lindenbach BD, Rice CM (2005) Unravelling hepatitis C virus replication from genome to function. Nature 436:933–938PubMedCrossRefGoogle Scholar
  50. Liu J, Montelione GT, Rost B (2007) Novel leverage of structural genomics. Nat Biotechnol 25:849–851PubMedCrossRefGoogle Scholar
  51. Lundstrom J, Rychlewski L, Bujnicki J, Elofsson A (2001) Pcons: a neural-network-based consensus predictor that improves fold recognition. Protein Sci 10:2354–2362PubMedCrossRefGoogle Scholar
  52. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMedCrossRefGoogle Scholar
  53. McGuffin LJ (2009) Prediction of global and local model quality in CASP8 using the ModFOLD server. Proteins 77 (Suppl 9):185–190Google Scholar
  54. Mosimann S, Meleshko R, James MN (1995) A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins 23:301–317PubMedCrossRefGoogle Scholar
  55. Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A (2007) Critical assessment of methods of protein structure prediction –Round VII. Proteins 69:3–9PubMedCrossRefGoogle Scholar
  56. Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A (2009) Critical assessment of methods of protein structure prediction – Round VII. Proteins 77 (Suppl 9):1–4Google Scholar
  57. Moult J, Fidelis K, Rost B, Hubbard T, Tramontano A (2005) Critical assessment of methods of protein structure prediction (CASP) – Round 6. Proteins 61 (Suppl 7):3–7PubMedCrossRefGoogle Scholar
  58. Moult J, Fidelis K, Zemla A, Hubbard T (2001) Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins (Suppl 5):2–7Google Scholar
  59. Moult J, Fidelis K, Zemla A, Hubbard T (2003) Critical assessment of methods of protein structure prediction (CASP) – Round V. Proteins 53 (Suppl 6):334–339PubMedCrossRefGoogle Scholar
  60. Moult J, Hubbard T, Bryant SH, Fidelis K, Pedersen JT (1997) Critical assessment of methods of protein structure prediction (CASP): round II. Proteins (Suppl 1):2–6Google Scholar
  61. Moult J, Hubbard T, Fidelis K, Pedersen JT (1999) Critical assessment of methods of protein structure prediction (CASP): round III. Proteins (Suppl 3):2–6Google Scholar
  62. Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to assess protein structure prediction methods. Proteins 23:ii–vCrossRefGoogle Scholar
  63. Orengo CA, Flores TP, Taylor WR, Thornton JM (1993) Identification and classification of protein fold families. Protein Eng 6:485–500PubMedCrossRefGoogle Scholar
  64. Patil AP, Okiro EA, Gething PW, Guerra CA, Sharma SK, Snow RW, Hay, SI (2009) Defining the relationship between Plasmodium falciparum parasite rate and clinical disease: statistical models for disease burden estimation. Malar J 8:186PubMedCrossRefGoogle Scholar
  65. Pieper U, Eswar N, Webb BM, Eramian D, Kelly L, Barkan DT, Carter H, Mankoo P, Karchin R, Marti-Renom MA, Davis FP, Sali A (2009) MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 37:D347–354PubMedCrossRefGoogle Scholar
  66. Pizzi E, Tramontano A, Tomei L, La Monica N, Failla C, Sardana M, Wood T and De Francesco R (1994) Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition. Proc Natl Acad Sci USA 91:888–892PubMedCrossRefGoogle Scholar
  67. Read RJ, Chavali G (2007) Assessment of CASP7 predictions in the high accuracy template-based modeling category. Proteins 69 (Suppl 8):27–37PubMedCrossRefGoogle Scholar
  68. Reese MG, Hartzell G, Harris NL, Ohler U, Abril JF, Lewis SE (2000) Genome annotation assessment in Drosophila melanogaster. Genome Res 10:483–501PubMedCrossRefGoogle Scholar
  69. Russell RB, Saqi MA, Sayle RA, Bates PA, Sternberg MJ (1997) Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation. J Mol Biol 269:423–439PubMedCrossRefGoogle Scholar
  70. Rykunov D, Fiser A (2007) Effects of amino acid composition finite size of proteins and sparse statistics on distance-dependent statistical pair potentials. Proteins 67:559–568PubMedCrossRefGoogle Scholar
  71. Sadreyev RI, Kim, BH, Grishin NV (2009) Discrete-continuous duality of protein structure space. Curr Opin Struct Biol 19:321–328PubMedCrossRefGoogle Scholar
  72. Sali A (1998) 100,000 protein structures for the biologist. Nat Struct Biol 5:1029–1032PubMedCrossRefGoogle Scholar
  73. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence–structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257PubMedCrossRefGoogle Scholar
  74. Siew N, Elofsson A, Rychlewski L, Fischer D (2000) MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16:776–785PubMedCrossRefGoogle Scholar
  75. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362PubMedCrossRefGoogle Scholar
  76. Sippl MJ (2009) Fold space unlimited. Curr Opin Struct Biol 19:312–320PubMedCrossRefGoogle Scholar
  77. Tanenbaum AS (2006) Computer networks. Prentice Hall PTR, Upper Saddle River, NJGoogle Scholar
  78. Tramontano A, Cozzetto D, Giorgetti A, Raimondo D (2008) The assessment of methods for protein structure prediction. Methods Mol Biol 413:43–57PubMedGoogle Scholar
  79. Tramontano A, Leplae R, Morea V (2001) Analysis and assessment of comparative modeling predictions in CASP4. Proteins (Suppl 5):22–38Google Scholar
  80. Tramontano A, Morea V (2003) Assessment of homology-based predictions in CASP5. Proteins 53 (Suppl 6):352–368PubMedCrossRefGoogle Scholar
  81. Tress M, Ezkurdia I, Grana O, Lopez G, Valencia A (2005) Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 61 (Suppl 7):27–45PubMedCrossRefGoogle Scholar
  82. Tress ML, Ezkurdia I, Richardson JS (2009) Target domain definition and classification in CASP8. Proteins 77 (Suppl 9):10–17Google Scholar
  83. Tress ML, Martelli PL, Frankish A, Reeves GA, Wesselink JJ, Yeats C, Olason PL, Albrecht M, Hegyi H, Giorgetti A, Raimondo D, Lagarde J, Laskowski RA, Lopez G, Sadowski MI, Watson JD, Fariselli P, Rossi I, Nagy A, Kai W, Storling Z, Orsini M, Assenov Y, Blankenburg H, Huthmacher C, Ramirez F, Schlicker A, Denoeud F, Jones P, Kerrien S, Orchard S, Antonarakis SE, Reymond A, Birney E, Brunak S, Casadio R, Guigo R, Harrow J, Hermjakob H, Jones DT, Lengauer T, Orengo CA, Patthy L, Thornton JM, Tramontano A, Valencia A (2007) The implications of alternative splicing in the ENCODE protein complement. Proc Natl Acad Sci USA 104:5495–5500PubMedCrossRefGoogle Scholar
  84. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram, RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43PubMedCrossRefGoogle Scholar
  85. Venclovas C, Zemla A, Fidelis K, Moult J (1997) Criteria for evaluating protein structures derived from comparative modeling. Proteins (Suppl 1):7–13Google Scholar
  86. Venclovas C, Zemla A, Fidelis K, Moult J (2001) Comparison of performance in successive CASP experiments. Proteins (Suppl 5):163–170Google Scholar
  87. Venclovas C, Zemla A, Fidelis K, Moult J (2003) Assessment of progress over the CASP experiments. Proteins 53 (Suppl 6):585–595PubMedCrossRefGoogle Scholar
  88. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew, I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan, W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun, J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan, C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V Istrail S Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu, X, Lopez J, Ma, D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan, S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu, X (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  89. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  90. Wallner B, Elofsson A (2005) Pcons5: combining consensus structural evaluation and fold recognition scores. Bioinformatics 21:4248–4254PubMedCrossRefGoogle Scholar
  91. Wallner B, Elofsson A (2007) Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins 69 (Suppl 8):184–193PubMedCrossRefGoogle Scholar
  92. Wallner B, Fang H, Elofsson A (2003) Automatic consensus-based fold recognition using Pcons, ProQ and Pmodeller. Proteins 53 (Suppl 6):534–541PubMedCrossRefGoogle Scholar
  93. Wang G, Jin Y, Dunbrack RL Jr (2005) Assessment of fold recognition predictions in CASP6. Proteins 61 (Suppl 7):46–66PubMedCrossRefGoogle Scholar
  94. Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31:3370–3374PubMedCrossRefGoogle Scholar
  95. Zemla A, Venclovas Moult J, Fidelis K (2001) Processing and evaluation of predictions in CASP4. Proteins (Suppl 5):13–21Google Scholar
  96. Zemla A, Venclovas C, Moult J, Fidelis K (1999) Processing and analysis of CASP3 protein structure predictions. Proteins (Suppl 3):22–29Google Scholar
  97. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemical Sciences“Sapienza” University of RomeRomeItaly
  2. 2.Istituto Pasteur – Fondazione Cenci Bolognetti,“Sapienza” University of RomeRomeItaly

Personalised recommendations