Non-destructive EDXRF Analyses of Archaeological Basalts

  • Steven P. Lundblad
  • Peter R. Mills
  • Arian Drake-Raue
  • Scott Kekuewa Kikiloi


Non-destructive energy-dispersive X-ray Fluorescence (EDXRF) analysis measures the interiors and exteriors of samples. We examine the effects of chemical weathering, surface contamination by phosphates, surface morphology, and textural variation on archaeological basalt. Major element data are most affected by these factors, altering both the measured chemical composition and the precision of the analyses. Measured chemical composition of trace elements (Rb, Sr, Y, Zr, and Nb) are less affected. These factors increase the measured variation in sample populations.


Surface Irregularity Chemical Weathering Textural Variation Weathered Surface Quarry Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acquisition of the EDXRF at the University of Hawai’i-Hilo was supported by a major research instrumentation grant from the National Science Foundation (BCS 0317528). We gratefully acknowledge Randy Cone (ThermoNoran), Craig Skinner (Northwest Research Obsidian Studies Laboratory), and Steven Shackley (UC-Berkeley) for their assistance with EDXRF methods. We also thank Melanie Mintmier and Haleakala National Park for obtaining samples.


  1. Bayman, J. M., & Moniz Nakamura, J. J. (2001). Craft specialization and adze production on Hawai’i Island. Journal of Field Archaeology, 28, 239–252.CrossRefGoogle Scholar
  2. Best, S. B. (1984). Lakeba: The prehistory of a Fijian island. Unpublished doctoral dissertation, University of Aukland.Google Scholar
  3. Carson, M. T., & Mintmier, M. A. (2006). Archaeological site documentation in front country areas in the summit district of Haleakala National Park, Maui Island, Hawaii. Honolulu: International Archaeological Research Institute.Google Scholar
  4. Casadevall, T. J., & Dzurisin, D. (1987). Stratigraphy and Petrology of the Uwekahuna Bluff Section, Kilauea Caldera. USGS Professional Paper, 1350, 351–376.Google Scholar
  5. Casadevall, T. J., & Dzurisin, D. (1987). Intrusive Rocks of Kilauea Caldera. USGS Professional Paper, 1350, 377–394.Google Scholar
  6. Clague, D. A., & Dalrymple, G. B. (1987). The Hawaiian-Emperor Volcanic Chain Part I: Geologic Evolution. USGS Professional Paper, 1350, 5–54.Google Scholar
  7. Collerson, K. D., & Weisler, M. I. (2007). Stone adze compositions and the extent of ancient Polynesian voyaging and trade. Science, 317, 1907–1911.CrossRefGoogle Scholar
  8. Cousens, B. L., Clague, D. A., & Sharp, W. D. (2003). Chronology, chemistry, and origin of trachytes from Hualalai Volcano, Hawaii. Geochemistry Geophysics Geosystems, 4(9), 27. doi: 10.1029/2003GC000560.CrossRefGoogle Scholar
  9. Davis, M. K., Jackson, T. L., Shackley, M. S., Teague, T., & Hampel, J. H. (1998). Factors affecting the energy dispersive X-ray fluorescence (EDXRF) analysis of archaeological obsidian. In M. S. Shackley (Ed.), Archaeological obsidian studies: method and theory. (pp. 59–80). New York: Plenum.Google Scholar
  10. Emory, K. P. (1928). Archaeology of Nihoa and Necker Islands, Tanager expedition no. 5. Bishop Museum Bulletin, 53.Google Scholar
  11. Frey, F. A., Wise, W. S., Garcia, M. O., West, H. B., Kwon, S., & Kennedy, A. K. (1990). Evolution of Mauna Kea Volcano, Hawaii; petrologic and geochemical constraints on postshield volcanism. Journal of Geophysical Research, 95(B2), 1271–1300.CrossRefGoogle Scholar
  12. Garcia, M. O., Rhodes, J. M., Ho, R. A., Ulrich, G. E., & Wolfe, E. W. (1992). Petrology of lavas from episodes 2-47 of the Pu’u `O`o eruption of Kialuea Volcano, Hawaii: evaluation of magmatic processes. Bulletin of Volcanology, 55, 1–16.CrossRefGoogle Scholar
  13. Garcia, M. O., Pietruszka, A. J., Rhodes, J. M., & Swanson, K. (2000). Magmatic processes during the prolonged Pu`u `O`o eruption of Kilauea Volcano, Hawaii. Journal of Petrology, 41, 967–990.CrossRefGoogle Scholar
  14. Garcia, M. O., Pietruszka, A. J., & Rhodes, J. M. (2003). A petrologic perspective of Kilauea Volcano’s summit magma reservoir. Journal of Petrology, 44, 2313–2339. doi: 10.1093/petrology/egg079.CrossRefGoogle Scholar
  15. Jackson, R. J., Jackson, T. J., Miksicek, C., Roper, K., & Simons, D. (1994). Framework for archaeological research and management: National Forests of the North-Central Sierra Nevada, Unit III: special studies and research data. Santa Cruz: BioSystems Analysis.Google Scholar
  16. Kirch, P. V. (1985). Feather gods and fishhooks. Honolulu: University of Hawaii Press.Google Scholar
  17. Lass, B. (1994). Hawaiian adze production and distribution: implications for the development of chiefdoms. (UCLA Institute of Archaeology Monograph No. 37). Los Angeles: University of California Los Angeles.Google Scholar
  18. Latham, T., Sutton, P. A., & Versub, K. L. (1992). Non-destructive XRF characterization of basaltic artifacts from Truckee, California. Geoarchaeology, 7, 81–101.CrossRefGoogle Scholar
  19. Lundblad, S. P., Mills, P. R., & Hon, K. (2008). Analysing archaeological basalt using non-destructive energy-dispersive X-ray fluorescence (EDXRF): effects of post-depositional chemical weathering and sample size on analytical precision. Archaeometry, 50, 1–11.Google Scholar
  20. Mills, P. R., & Lundblad, S.P. (2006). Preliminary field report: the geochemistry of the Ko’oko’olau Complex, Mauna Kea Adze Quarry (50-10-23-4136) TMK: 4-4-15:10. Hilo: University of Hawaii at Hilo, Geoarchaeology Laboratory.Google Scholar
  21. Mills, P. R., Lundblad, S. P., Smith, J. G., McCoy, P. C., & Nalemaile, S. P. (2008). Science and sensitivity: a geochemical characterization of the Mauna Kea Adze Quarry Complex, Hawaii Island, Hawaii. American Antiquity, 73, 743–758.Google Scholar
  22. Moore, R. B., Clague, D. A., Rubin, M., & Bohrson, W. A. (1987). Hualalai Volcano: A Preliminary Summary of Geologic, Petrologic, and Geophysical Data. USGS Professional Paper, 1350, 571–586.Google Scholar
  23. Northwest Research Obsidian Studies Laboratory. (2008). Non-Obsidian Geochemical Characterization References. Retrieved Sept 21, 2008, from:
  24. Rhodes, J. M. (1996). Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project. Journal of Geophysical Research, 101(B5), 11729–11746.Google Scholar
  25. Sinton, J. M. & Sinoto, Y. H. (1997). A geochemical database for Polynesian adze studies. In M. I. Weisler (Ed.), Prehistoric long-distance interaction in Oceania: an interdisciplinary approach. (pp. 194–204). Auckland: New Zealand Archaeological Association Monograph 21.Google Scholar
  26. Tilling, R. I., Wright, T. L., & Millard Jr., H. T. (1987). Track-element chemistry of Kilauea and Mauna Loa lava in space and time: a reconnaissance. USGS Professional Paper 1350,641–689.Google Scholar
  27. Tuggle H. D. (1976). Windward Kohala-Hamakua archaeological zone, island of Hawaii. Honolulu: University of Hawaii, Manoa, Department of Anthropology.Google Scholar
  28. United States Department of Agriculture. (2008). Soil and Climate Data. Retrieved Sept 21, 2008, from:
  29. Weisler, M. I. (1990). Sources and sourcing of volcanic glass in Hawaii: implications for exchange studies. Archaeology in Oceania, 25, 16–25.Google Scholar
  30. Weisler, M. I. (1993). Provenance studies of Polynesian Basalt Adze Material: a review and suggestions for improving regional data bases. Asian Perspectives, 32, 61–83.Google Scholar
  31. Weisler, M. I. (1993b). Chemical characterization and Provenance of Manu’a Adz Material using a non-destructive x-ray fluorescence technique. In P. V. Kirch & T. L. Hunt (Eds.), The To’aga Site: Three millenia of Polynesian occupation in the Manu’a Islands, American Samoa. (pp. 167–187). Berkeley: Contributions of the University of California Archaeological Research Facility 51.Google Scholar
  32. Weisler, M. I. (Ed.). (1997). Prehistoric long-distance interaction in Oceania: an interdisciplinary approach. New Zealand Archaeological Association Monograph, 21.Google Scholar
  33. Weisler, M. I. (1998). Hard evidence for prehistoric interaction in Polynesia. Current Anthropology 39, 521–532.CrossRefGoogle Scholar
  34. Weisler, M. I., & Kirch, P. V. (1996). Interisland and interarchipelago transfer of stone tools in prehistoric Polynesia. Proceedings of the National Academy of Sciences, 93, 1381–1385.CrossRefGoogle Scholar
  35. Weisler, M. I., & Woodhead, J. D. (1995). Basalt Pb isotope analysis and the prehistoric settlement of Polynesia. Proceedings of the National Academy of Sciences, 92, 1881–1885.CrossRefGoogle Scholar
  36. Winterhoff, E. Q. (2003). Ma’a mai Malaeloa: A geochemical investigation of a newly discovered basalt quarry source on Tutuila, American Samoa. Unpublished master’s thesis, University of Oregon.Google Scholar
  37. Wolfe, E. W., Wise, W. S., & Dalrymple, G. B. (1997). The geology and petrology of Mauna Kea Volcano, Hawaii – a study of Postshield volcanism (U.S. Geological Survey Professional Paper 1557). Washington: U.S. Government Printing Office.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Steven P. Lundblad
    • 1
  • Peter R. Mills
  • Arian Drake-Raue
  • Scott Kekuewa Kikiloi
  1. 1.Department of GeologyUniversity of Hawaii-HiloHiloUSA

Personalised recommendations