Atmospheric Perfluorinated Acid Precursors: Chemistry, Occurrence, and Impacts

Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 208)

Abstract

The two major classes of perfluorinated acids (PFAs), perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), are both likely to be ionized at environmental pH, suggesting they will be present primarily in the aqueous phase. Long-range transport through water occurs slowly, on the order of decades. The ubiquitous distribution of PFAs suggests a faster, atmospheric dissemination mechanism. In addition, not all PFAs observed in the environment have been commercially produced.

References

  1. 3M Company (1999) Fluorochemical use, distribution and release overview. Public Docket AR226-0550, United States Environmental Protection Agency, St. Paul, MNGoogle Scholar
  2. 3M Company (2000) Phase-out plan for POSF-based products. Public Docket OPPT-2002-0043-0009, US Environmental Protection Agency, St. Paul, MNGoogle Scholar
  3. Acerboni G, Beukes JA, Jensen NR, Hjorth J, Myhre G, Nielsen CJ, Sundet JK (2001) Atmospheric degradation and global warming potentials of three perfluoroalkenes. Atmos Environ 35:4113–4123CrossRefGoogle Scholar
  4. Al-Ghanem S, Battah AH, Salhab AS (2008) Monitoring of volatile anesthetics in operating room personnel using GC–MS. Jordan Med J 42(1):13–19Google Scholar
  5. Antoniotti P, Borocci S, Giordani M, Grandinetti F (2008) Cl-initiated oxidation of N-ethyl-perfluoroalkanesulfonamides: a theoretical insight into experimentally observed products. J Mol Struc-Theochem 857:57–65CrossRefGoogle Scholar
  6. Armitage J, Cousins IT, Buck RC, Prevedouros K, Russell MH, Macleod M, Korzeniowski SH (2006) Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ Sci Technol 40(22):6969–6975CrossRefGoogle Scholar
  7. Armitage JM, Macleod M, Cousins IT (2009a) Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model. Environ Sci Technol 43:1134–1140CrossRefGoogle Scholar
  8. Armitage JM, Macleod M, Cousins IT (2009b) Comparative assessment of the global fate and transport pathways of long-chain perfluorocarboxylic acids (PFCAs) and perfluorocarboxylates (PFCs) emitted from direct sources. Environ Sci Technol 43:5830–5836Google Scholar
  9. Armitage JM, Schenker U, Scheringer M, Martin JW, Macleod M, Cousins IT (2009c) Modeling the global fate and transport of perfluorooctane sulfonate (PFOS) and precursor compounds in relation to temporal trends in wildlife exposure. Environ Sci Technol 43:9274–9280CrossRefGoogle Scholar
  10. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J, Wallington TJ (2008) Evaluated kinetic and photochemical data for atmospheric chemistry: vol IV – gas phase reactions of organic halogen species. Atmos Chem Phys 8:4141–4496CrossRefGoogle Scholar
  11. Barber JL, Berger U, Chaemfa C, Huber S, Jahnke A, Temme C, Jones KC (2007) Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J Environ Monitor 9:530–541CrossRefGoogle Scholar
  12. Barry J, Sidebottom H, Treacy J, Franklin J (1995) Kinetics and mechanism for the atmospheric oxidation of 1,1,2-trifluoroethane (HFC 143). Int J Chem Kinet 27:27–36CrossRefGoogle Scholar
  13. Bednarek G, Ereil M, Hoffmann A, Kohlmann JP, Mörs V (1996) Rate mechanism of the atmospheric degradation of 1,1,1,2-tetrafluoroethane (HFC-134a). Phys Chem Chem Phys 100(5):528–539Google Scholar
  14. Bilde M, Wallington TJ, Ferronato C, Orlando JJ, Tyndall GS, Estupiñan E, Haberkorn S (1998) Atmospheric chemistry of CH2BrCl, CHBrCl2, CHBr2Cl, CF3CHBrCl, and CBr2Cl2. J Phys Chem A 102:1976–1986CrossRefGoogle Scholar
  15. Boulanger B, Peck AM, Schnoor JL, Hornbuckle KC (2005) Mass budget of perfluorooctane surfactants in Lake Ontario. Environ Sci Technol 39:74–79CrossRefGoogle Scholar
  16. Boutonnet JC, Bingham P, Calamari D, de Rooij C, Franklin J, Kawano T, Libre J-M, McCulloch A, Malinverno G, Odom JM, Rusch GM, Smythe K, Sobolev I, Thompson R, Tiedje JM (1999) Environmental risk assessment of trifluoroacetic acid. Hum Ecol Risk Assess 5(1):59–124CrossRefGoogle Scholar
  17. Braun WF, Fahr A, Klein R, Kurylo MJ, Huie RE (1991) UV gas and liquid phase absorption cross section measurements of hydrochlorofluorocarbons HCFC-225ca and HCFC-225cb. J Geophys Res 96(D7):13009–13015CrossRefGoogle Scholar
  18. Brown AC, Canosa-Mas CE, Parr AD, Wayne RP (1990) Laboratory studies of some halogenated ethanes and ethers: measurements of rates of reaction with OH and of infrared absorption cross sections. Atmos Environ 24A:2499–2511Google Scholar
  19. Burns DC, Ellis DA, Li X, McMurdo CJ, Webster E (2008) Experimental pK a determination for perfluorooctanoic acid (PFOA) and the potential impact of pK a concentration dependence on laboratory-measured partitioning phenomena and environmental modeling. Environ Sci Technol 42:9283–9288CrossRefGoogle Scholar
  20. Butt CM, Mabury SA, Muir DCG, Braune BM (2007a) Prevalence of long-chained perfluorinated carboxylates in seabirds from the Canadian Arctic. Environ Sci Technol 41:3521–3528CrossRefGoogle Scholar
  21. Butt CM, Muir DCG, Stirling I, Kwan M, Mabury SA (2007b) Rapid response of Arctic ringed seals to changes in perfluoroalkyl production. Environ Sci Technol 41(1):42–49CrossRefGoogle Scholar
  22. Butt CM, Young CJ, Mabury SA, Hurley MD, Wallington TJ (2009) Atmospheric chemistry of 4:2 fluorotelomer acrylate (C4F9CH2CH2OC(O)CH=CH2): kinetics, mechanisms and products of chlorine atom and OH radical initiated oxidation. J Phys Chem A 113:3155–3161CrossRefGoogle Scholar
  23. Caliebe C, Gerwinski W, Hühnerfuss H, Theobald N (2005) Occurrence of perfluorinated organic acids in the water of the North Sea and Arctic North Atlantic in Fluoros, Toronto, Canada. http://www.chem.utoronto.ca/symposium/fluoros/pdfs/ANA010Theobald.pdf
  24. Carr S, Treacy JJ, Sidebottom HW, Connell RK, Canosa-Mas CE, Wayne RP, Franklin J (1994) Kinetics and mechanisms for the reaction of hydroxyl radicals with trifluoroacetic acid under atmospheric conditions. Chem Phys Lett 227:39–44CrossRefGoogle Scholar
  25. Chan CY, Tang JH, Li YS, Chan LY (2006) Mixing ratios and sources of halocarbons in urban, semi-urban and rural sites of the Pearl River Delta, South China. Atmos Environ 40:7331–7345CrossRefGoogle Scholar
  26. Chen L, Fukuda K, Takenaka N, Bandow H, Maeda Y (2000) Kinetics of the gas-phase reaction of CF3CF2CH2OH with OH radicals and its atmospheric lifetime. Int J Chem Kinet 32:73–78CrossRefGoogle Scholar
  27. Chen L, Tokuhashi K, Kutsuna S, Sekiya A (2004) Rate constants for the gas-phase reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals at 250–430 K. Int J Chem Kinet 36:26–33CrossRefGoogle Scholar
  28. Cheng J, Psillakis E, Hoffman MR, Colussi AJ (2009) Acid dissociation versus molecular association of perfluoroalkyl oxoacids: environmental implications. J Phys Chem A 113:8152–8156CrossRefGoogle Scholar
  29. Chiappero MS, Malanca FE, Arguello GA, Wooldridge ST, Hurley MD, Ball JC, Wallington TJ, Waterland RL, Buck RC (2006) Atmospheric chemistry of perfluoroaldehydes (CxF2x+1CHO) and fluorotelomer aldehydes (CxF2x+1CH2CHO): quantification of the important role of photolysis. J Phys Chem A 110:11944–11953CrossRefGoogle Scholar
  30. Chiappero MS, Arguello GA, Hurley MD, Wallington TJ (2008) Atmospheric chemistry of C8F17CH2CHO: yield from C8F17CH2CH2OH (8:2 FTOH) oxidation, kinetics and mechanisms of reactions with Cl atoms and OH radicals. Chem Phys Lett 461:198–202CrossRefGoogle Scholar
  31. Clyne MAA, Holt PM (1979) Reaction kinetics involving ground Χ2Π and excited A2Σ+ hydroxyl radicals. Part 2: Rate constants for reactions of OH Χ2Π with halogenomethanes and halogenoethanes. J Chem Soc Faraday T 2(75):582–591Google Scholar
  32. Culbertson JA, Prins JM, Grimsrud EP, Rasmussen RA, Khalil MAK, Shearer MJ (2004) Observed trends for CF3-containing compounds in background air at Cape Meares, Oregon, Point Barrow, Alaska, and Palmer Station, Antarctica. Chemosphere 55:1109–1119CrossRefGoogle Scholar
  33. D’eon JC, Hurley MD, Wallington TJ, Mabury SA (2006) Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: kinetics and mechanism of reaction with OH. Environ Sci Technol 40(6):1862–1868CrossRefGoogle Scholar
  34. De Silva AO, Muir DCG, Mabury SA (2009) Distribution of perfluorocarboxylate isomers in select samples from the North American environment. Environ Toxicol Chem 28(9):1801–1814CrossRefGoogle Scholar
  35. DeMore WB (1992) Rates of hydroxyl reactions with some HFCs. P Soc Photo-Opt Ins 1715:72–77Google Scholar
  36. DeMore WB (1993a) Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2). Geophys Res Lett 20(13):1359–1362CrossRefGoogle Scholar
  37. DeMore WB (1993b) Rates of the hydroxyl radical reactions with some HFCs. Paper presented at the proceedings of the SPIE, The International Society for Optical EngineeringGoogle Scholar
  38. Dinglasan-Panlilio MJA, Mabury SA (2006) Significant residual fluorinated alcohols present in various fluorinated materials. Environ Sci Technol 40(5):1447–1453CrossRefGoogle Scholar
  39. Dobe S, Kachatryan LA, Berces T (1989) Kinetics of reactions of hydroxyl radicals with a series of aliphatic aldehydes. Ber Bunsen-Ges Phys Chem 93(8):847–952CrossRefGoogle Scholar
  40. Dreyer A, Temme C, Sturm R, Ebinghaus R (2008) Optimized method avoiding solvent-induced response enhancement in the analysis of volatile and semi-volatile polyfluorinated alkylated compounds using gas chromatography–mass spectrometry. J Chromatogr A 1178:199–205CrossRefGoogle Scholar
  41. Dreyer A, Ebinghaus R (2009) Polyfluorinated compounds in ambient air from ship- and land-based measurements in northern Germany. Atmos Environ 43:1527–1535CrossRefGoogle Scholar
  42. Dreyer A, Matthias V, Temme C, Ebinghaus R (2009a) Annual time series of air concentrations of polyfluorinated compounds. Environ Sci Technol 43:4029–4036CrossRefGoogle Scholar
  43. Dreyer A, Weinberg I, Temme C, Ebinghaus R (2009b) Polyfluorinated compounds in the atmospheric of the Atlantic and Southern Oceans: evidence for a global distribution. Environ Sci Technol 43:6507–6514CrossRefGoogle Scholar
  44. Edney EO, Gay Jr. BW, Driscoll DJ (1991) Chlorine initiated oxidation studies of hydrochlorofluorocarbons: results for HCFC-123 (CF3CHCl2) and HCFC-141b (CFCl2CH3). J Atmos Chem 12:105–120CrossRefGoogle Scholar
  45. Edney EO, Driscoll DJ (1992) Chlorine initiated photooxidation studies of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs): results for HCFC-22 (CHClF2); HFC-41 (CH3F); HCFC-124 (CClFHCF3); HFC-125 (CF3CHF2); HFC-134a (CF3CH2F); HCFC-142b (CClF2CH3); and HFC-152a (CHF2CH3). Int J Chem Kinet 24:1067–1081CrossRefGoogle Scholar
  46. Ellis DA, Mabury SA, Martin JW, Muir DCG (2001) Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 412:321–324CrossRefGoogle Scholar
  47. Ellis DA, Martin JW, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ (2003) Atmospheric lifetime of fluorotelomer alcohols. Environ Sci Technol 37(17):3816–3820CrossRefGoogle Scholar
  48. Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ (2004) Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ Sci Technol 38(12):3316–3321CrossRefGoogle Scholar
  49. Ellis DA, Webster E (2009) Response to comment on “Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA”. Environ Sci Technol 43:1234–1235CrossRefGoogle Scholar
  50. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: S. Solomon et al. (eds) Climate change 2007: The physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  51. Gierczak T, Talukdar R, Vaghjiani GL, Lovejoy ER, Ravishankara AR (1991) Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes: 1. Rate coefficients for reactions with OH. J Geophys Res 96(D3):5001–5011CrossRefGoogle Scholar
  52. Giesy JP, Kannan K (2001) Distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342CrossRefGoogle Scholar
  53. Gillotay D, Simon PC (1991) Temperature-dependence of ultraviolet absorption cross-sections of alternative chlorofluoroethanes: 2. The 2-chloro-1,1,1,2-tetrafluoro ethane – HCFC-124. J Atmos Chem 13:289–299CrossRefGoogle Scholar
  54. Goss K-U (2008) The pK a values of PFOA and other highly fluorinated carboxylic acids. Environ Sci Technol 42:456–458CrossRefGoogle Scholar
  55. Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35(4):766–770CrossRefGoogle Scholar
  56. Hasson AS, Tyndall GW, Orlando JJ (2004) A product yield study of the reaction of HO2 radicals with ethyl peroxy (C2H5O2) acetyl peroxy (CH3C(O)O2) and acetonyl peroxy (CH3C(O)CH2O2) radicals. J Phys Chem A 108:5979–5989CrossRefGoogle Scholar
  57. Hayman GD, Jenkin ME, Murrells TP, Johnson CE (1994) Tropospheric degradation chemistry of HCFC-123 (CF3CHCl2): a proposed replacement chlorofluorocarbon. Atmos Environ 28(3):421–437CrossRefGoogle Scholar
  58. Hoshino M, Kimachi Y, Terada A (1996) Thermogravimetric behaviour of perfluoropolyether. J Appl Polym Sci 62:207–215CrossRefGoogle Scholar
  59. Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DCG (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40(11):3463–3473CrossRefGoogle Scholar
  60. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis: contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, New York, NY, 881 ppGoogle Scholar
  61. Howard CJ, Evenson KM (1976) Rate constants for the reactions of OH with ethane and some halogen substituted ethanes at 296 K. J Chem Phys 64(11):4303–4306CrossRefGoogle Scholar
  62. Howard PH, Meylan W (2007) EPA great lakes study for identification of PBTs to develop analytical methods: selection of additional PBTs – interim report, EPA contract No. EP-W-04-019Google Scholar
  63. Hsu K-J, DeMore WB (1995) Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements. J Phys Chem 99(4):1235–1244CrossRefGoogle Scholar
  64. Hurley MD, Ball JC, Wallington TJ, Sulbaek Andersen MP, Ellis DA, Martin JW, Mabury SA (2004a) Atmospheric chemistry of 4:2 fluorotelomer alcohol: products and mechanism of Cl atom initiated oxidation. J Phys Chem A 108(26):5635–5642CrossRefGoogle Scholar
  65. Hurley MD, Ball JC, Wallington TJ, Sulbaek Andersen MP, Ellis DA, Martin JW, Mabury SA (2004b) Atmospheric chemistry of fluorinated alcohols: reaction with Cl atoms and OH radicals and atmospheric lifetimes. J Phys Chem A 108(11):1973–1979CrossRefGoogle Scholar
  66. Hurley MD, Sulbaek Andersen MP, Wallington TJ, Ellis DA, Martin JW, Mabury SA (2004c) Atmospheric chemistry of perfluorinated carboxylic acids: reaction with OH radicals and atmospheric lifetimes. J Phys Chem A 108:615–620CrossRefGoogle Scholar
  67. Hurley MD, Misner JA, Ball JC, Wallington TJ, Ellis DA, Martin JW, Mabury SA, Sulbaek Andersen MP (2005) Atmospheric chemistry of CF3CH2CH2OH: kinetics, mechanisms and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOx. J Phys Chem A 109(43):9816–9826CrossRefGoogle Scholar
  68. Hurley MD, Ball JC, Wallington TJ, Sulbaek Andersen MP, Nielsen CJ, Ellis DA, Martin JW, Mabury SA (2006) Atmospheric chemistry of n-CxF2x+1CHO (x = 1,2,3,4): fate of n-CxF2x+1C(O) radicals. J Phys Chem A 110(45):12443–12447CrossRefGoogle Scholar
  69. Hurley MD, Ball JC, Wallington TJ (2007) Atmospheric chemistry of the Z and E isomers of CF3CF=CHF: kinetics, mechanisms, and products of gas-phase reactions with Cl atoms, OH radicals, and O3. J Phys Chem A 111:9789–9795CrossRefGoogle Scholar
  70. Jahnke A, Ahrens A, Ebinghaus R, Temme C (2007a) Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany. Environ Sci Technol 41:745–752CrossRefGoogle Scholar
  71. Jahnke A, Ahrens L, Ebinghaus R, Berger U, Barber JL, Temme C (2007b) An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples. Anal Bioanal Chem 387:965–975CrossRefGoogle Scholar
  72. Jahnke A, Berger U, Ebinghaus R, Temme C (2007c) Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53°N–33°S). Environ Sci Technol 41(9):3055–3061CrossRefGoogle Scholar
  73. Jahnke A, Huber S, Temme C, Kylin H, Berger U (2007d) Development and application of a simplified sampling method for volatile polyfluorinated alkyl substances in indoor and environmental air. J Chromatogr A 1164:1–9CrossRefGoogle Scholar
  74. Jahnke A, Berger U (2009) Trace analysis of per- and polyfluorinated alkyl substances in various matrices – How do current methods perform? J Chromatogr A 1216:410–421CrossRefGoogle Scholar
  75. Jeong K-M, Hsu K-J, Jeffries JB, Kaufman F (1984) Kinetics of the reactions of OH with C2H6, CH3CCl3, CH2ClCHCl2, CH2ClCClF2, and CH2FCF3. J Phys Chem 88:1222–1226CrossRefGoogle Scholar
  76. Jordan A, Frank H (1999) Trifluoroacetate in the environment: evidence for sources other than HFC/HCFCs. Environ Sci Technol 33:522–527CrossRefGoogle Scholar
  77. Kanakidou M, Dentener FJ, Crutzen PJ (1995) A global three-dimensional study of the fate of HCFCs and HFC-134a in the troposphere. J Geophys Res 100(D5):18781–18801CrossRefGoogle Scholar
  78. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldous KM (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495CrossRefGoogle Scholar
  79. Kelly T, Bossoutrot V, Magneron I, Wirtz K, Treacy JJ, Mellouki A, Sidebottom H, Le Bras G (2005) A kinetic and mechanistic study of the reactions of OH radicals and Cl atoms with 3,3,3-trifluoropropanol under atmospheric conditions. J Phys Chem A 109:347–355CrossRefGoogle Scholar
  80. Kotamarthi VR, Rodriguez JM, Ko MKW, Tromp TK, Sze ND (1998) Trifluoroacetic acid from degradation of HCFCs and HFCs: a three-dimensional modeling study. J Geophys Res 103(D5):5747–5758CrossRefGoogle Scholar
  81. Langbein T, Sonntag H, Trapp D, Hoffmann A, Malms W, Röth E-P, Mörs V, Zellner R (1999) Volatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Brit J Anaesth 82(1):66–73CrossRefGoogle Scholar
  82. Leu G-H, Lee Y-P (1994) Temperature dependence of the rate coefficient of the reaction OH+CF3CH2F over the range 255–424 K. J Chin Chem Soc-TAIP 41:645–649Google Scholar
  83. Li YF, Macdonald RW (2005) Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Sci Total Environ 342:87–106CrossRefGoogle Scholar
  84. Liu R, Huie RE, Kurylo MJ (1990) Rate constants for the reactions of the OH radical with some hydrochlorofluorocarbons over the temperature range 270–400 K. J Phys Chem 94(8):3247–3249CrossRefGoogle Scholar
  85. Louis F, Talhaoui A, Sawerysyn J-P, Rayez M-T, Rayez J-C (1997) Rate coefficients for the gas phase reactions of CF3CH2F (HFC-134a) with chlorine and fluorine atoms: experimental and ab initio theoretical studies. J Phys Chem A 45:8503–8507CrossRefGoogle Scholar
  86. Martin J-P, Paraskevopoulos G (1983) A kinetic study of the reactions of OH radicals with fluoroethanes: estimates of C–H bond strengths in fluoroalkanes. Can J Chemistry 61:861–865CrossRefGoogle Scholar
  87. Martin JW, Muir DCG, Moody CA, Ellis DA, Kwan W, Solomon KR, Mabury SA (2002) Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry. Anal Chem 74(3):584–590CrossRefGoogle Scholar
  88. Martin JW, Mabury SA, Solomon KR, Muir DCG (2003a) Dietary accumulations of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22(1):189–195Google Scholar
  89. Martin JW, Mabury SA, Solomon KR, Muir DCG (2003b) Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22(1):196–204Google Scholar
  90. Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DCG, Mabury SA (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38(2):373–380CrossRefGoogle Scholar
  91. Martin JW, Ellis DA, Mabury SA, Hurley MD, Wallington TJ (2006) Atmospheric chemistry of perfluoroalkanesulfonamides: kinetic and product studies of the OH and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environ Sci Technol 40(3):864–872CrossRefGoogle Scholar
  92. Mashino M, Ninomiya Y, Kawasaki M, Wallington TJ, Hurley MD (2000) Atmospheric chemistry of CF3CF=CF2: kinetics and mechanism of its reactions with OH radicals, Cl atoms, and ozone. J Phys Chem A 104:7255–7260CrossRefGoogle Scholar
  93. McIlroy A, Tully FP (1993) Kinetic study of hydroxyl reactions with perfluoropropene and perfluorobenzene. J Phys Chem 97(3):610–614CrossRefGoogle Scholar
  94. McMurdo CJ, Ellis DA, Webster E, Butler J, Christensen RD, Reid LK (2008) Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA. Environ Sci Technol 42:3969–3974CrossRefGoogle Scholar
  95. Meller R, Moortgat GK (1997) CF3C(O)Cl: temperature-dependent (223–298 K) absorption cross-sections and quantum yields at 254 nm. J Photoch Photobio A 108:105–116CrossRefGoogle Scholar
  96. Mereau R, Rayez M-T, Rayez J-C, Caralp F, Lesclaux R (2001) Theoretical study on the atmospheric fate of carbonyl radicals: kinetics of decomposition reactions. Phys Chem Chem Phys 3:4712–4717CrossRefGoogle Scholar
  97. Miller BR, Weiss RF, Salameh PK, Tanhua T, Greally BR, Mühle J, Simmonds PG (2008) Medusa: a sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Anal Chem 80:1536–1545CrossRefGoogle Scholar
  98. Møgelberg TE, Sehested J, Bilde M, Wallington TJ, Nielsen OJ (1996) Atmospheric chemistry of CF3CFHCF3 (HFC-227ea): spectrokinetic investigation of the CF3CFO2 CF3 radical, its reactions with NO and NO2, and fate of the CF3CFOCF3 radical. J Phys Chem 100:8882–8889CrossRefGoogle Scholar
  99. Montzka SA, Myers RC, Butler JH, Elkins JW, Lock LT, Clarke AD, Goldstein AH (1996) Observations of HFC-134a in the remote troposphere. Geophys Res Lett 23(2):169–172CrossRefGoogle Scholar
  100. Moortgat GK, Veyret B, Lesclaux R (1989) Kinetics of the reaction of HO2 with CH3C(O)O2 in the temperature range 253–368 K. Chem Phys Lett 160(4):443–447CrossRefGoogle Scholar
  101. Nakayama T, Takahashi K, Matsumi Y, Toft A, Sulbaek Andersen MP, Nielsen OJ, Waterland RL, Buck RC, Hurley MD, Wallington TJ (2007) Atmospheric chemistry of CF3CH=CH2 and C4F9CH=CH2: products of the gas-phase reactions with Cl atoms and OH radicals. J Phys Chem A 111:909–915CrossRefGoogle Scholar
  102. Nayak AK, Buckley TJ, Kurylo MJ, Fahr A (1996) Temperature dependence of the gas and liquid phase ultraviolet absorption cross sections of HCFC-123 (CF3CHCl2) and HCFC-142b (CH3CF2Cl). J Geophys Res 101(C4):9055–9062CrossRefGoogle Scholar
  103. Nelson Jr. DD, Zahniser MS, Kolb CE (1992) Chemical kinetics of the reactions of the hydroxyl radical with several hydrochlorofluoropropanes. J Phys Chem 96:249–253CrossRefGoogle Scholar
  104. Nelson Jr. DD, Zahniser MS, Kolb CE (1993) OH reaction kinetics and atmospheric lifetimes of CF3CFHCF3 and CF3CH2Br. Geophys Res Lett 20(2):197–200CrossRefGoogle Scholar
  105. Nielsen OJ, Javadi MS, Sulbaek Andersen MP, Hurley MD, Wallington TJ, Singh R (2007) Atmospheric chemistry of CF3CF=CH2: kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O3. Chem Phys Lett 439:18–22CrossRefGoogle Scholar
  106. O’Doherty S, Cunnold DM, Manning A, Miller BR, Wang RHJ, Krummel PB, Fraser PJ, Simmonds PG, McCulloch A, Weiss RF, Salameh P, Porter LW, Prinn RG, Huang J, Sturrock G, Ryall D, Derwent RG, Montzka SA (2004) Rapid growth of hydrofluorocarbon 134a and hydrochlorofluorocarbons 141b, 142b, and 22 from Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and Mace Head, Ireland. J Geophys Res 109:DO6310CrossRefGoogle Scholar
  107. Olkhov RV, Smith IWM (2003) Time-resolved experiments on the atmospheric oxidation of C2H6 and some C2 hydrofluorocarbons. Phys Chem Chem Phys 5(16):3436–3442CrossRefGoogle Scholar
  108. Oono S, Harada KH, Mahmoud MAM, Inoue K, Koizumi A (2008a) Current levels of airborne polyfluorinated telomers in Japan. Chemosphere 73:932–937CrossRefGoogle Scholar
  109. Oono S, Matsubara E, Harada KH, Takagi S, Hamada S, Asakawa A, Inoue K, Watanabe I, Koizumi A (2008b) Survey of airborne polyfluorinated telomers in Keihan area, Japan. Bull Environ Contam Tox 80:102–106CrossRefGoogle Scholar
  110. Oram DE, Reeves CE, Sturges WT, Penkett SA, Fraser PJ, Langenfelds RL (1996) Recent tropospheric growth rate and distribution of HFC-134a (CF3CH2F). Geophys Res Lett 23(15):1949–1952CrossRefGoogle Scholar
  111. Orkin VL, Khamaganov VG (1993) Determination of rate constants for reactions of some hydrohaloalkanes with OH radicals and their atmospheric lifetimes. J Atmos Chem 16:157–167CrossRefGoogle Scholar
  112. Orkin VL, Huie RE, Kurylo MJ (1997) Rate constants for the reactions of OH with HFC-245cb (CH3CF2CF3) and some fluoroalkenes (CH2CHCF3, CH2CFCF3, CF2CFCF3, and CF2CF2). J Phys Chem A 101:9118–9124CrossRefGoogle Scholar
  113. Orlando JJ, Burkholder JB, McKeen SA, Ravishankara AR (1991) Atmospheric fate of several hydrofluoroethanes and hydrochloroethanes: 2. UV absorption cross sections and atmospheric lifetimes. J Geophys Res 96(D3):5013–5023CrossRefGoogle Scholar
  114. OSHA Directorate for Technical Support (2000) Anesthetic gases: guidelines for workplace exposures, Washington, DCGoogle Scholar
  115. Papadimitriou VC, Papanastasiou DK, Stefanopoulos VG, Zaras AM, Lazarou YG, Papgiannakopoulos P (2007) Kinetic study of the reactions of Cl atoms with CF3CH2CH2OH, CF3CF2CH2OH, CHF2CF2CH2OH, and CF3CHFCF2CH2OH. J Phys Chem A 111:11608–11617CrossRefGoogle Scholar
  116. Papadimitriou VC, Talukdar RK, Portmann RW, Ravishankara AR, Burkholder JB (2008) CF3CF=CH2 and (Z)–CF3CF=CHF: temperature dependent OH rate coefficients and global warming potentials. Phys Chem Chem Phys 10:808–820CrossRefGoogle Scholar
  117. Piekarz AM, Primbs T, Fields JA, Barofsky DF, Simonich S (2007) Semivolatile fluorinated organic compounds in Asian and Western U.S. air masses. Environ Sci Technol 41:8248–8255CrossRefGoogle Scholar
  118. Prather M, Spivakovsky CM (1990) Tropospheric OH and the lifetimes of hydrochlorofluorocarbons. J Geophys Res 95(D11):18723–18729CrossRefGoogle Scholar
  119. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40(1):32–44CrossRefGoogle Scholar
  120. Prinn RG, Weiss RF, Fraser PJ, Simmonds PG, Cunnold DM, Alyea FN, O’Doherty S, Salameh P, Miller BR, Huang J, Wang RHJ, Hartley DE, Harth C, Steele LP, Sturrock G, Midgley PM, McCulloch A (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res 105(D14):17751–17792CrossRefGoogle Scholar
  121. Rattigan OV, Wild O, Jones RL, Cox RA (1993) Temperature-dependent absorption cross-sections of CF3COCl, CF3COF, CH3COF, CCl3CHO and CF3COOH. J Photoch Photobio A 73:1–9CrossRefGoogle Scholar
  122. Rattigan OV, Rowley DM, Wild O, Jones RL, Cox RA (1994) Mechanism of atmospheric oxidation of 1,1,1,2-tetrafluoroethane (HFC 134a). J Chem Soc Faraday T 90(13):1819–1829CrossRefGoogle Scholar
  123. Reimann S, Schaub D, Stemmler K, Folini D, Hill M, Hofer P, Buchmann B, Simmonds PG, Greally BR, O’Doherty S (2004) Halogenated greenhouse gases at the Swiss high alpine site of Jungfraujoch (3,580 m asl): continuous measurements and their use for regional European source allocation. J Geophys Res 109:D05307CrossRefGoogle Scholar
  124. Russell MH, Berti WR, Szostek B, Buck RC (2008) Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils. Environ Sci Technol 42:800–807CrossRefGoogle Scholar
  125. Sawerysyn J-P, Talhaoui A, Meriaux B, Devolder P (1992) Absolute rate constants for elementary reactions between chlorine atoms and CHF2Cl, CH3CFCl2, CH3CF2Cl and CH2FCF3 at 297 ± 2 K. Chem Phys Lett 198(1–2):197–199CrossRefGoogle Scholar
  126. Schenker U, Scheringer M, Macleod M, Martin JW, Cousins IT, Hungerbühler K (2008) Contribution of volatile precursor substances to the flux of perfluorooctanoate to the Arctic. Environ Sci Technol 42:3710–3716CrossRefGoogle Scholar
  127. Schneider WF, Wallington TJ, Huie RE (1996) Energetics and mechanism of decomposition of CF3OH. J Phys Chem 100:6097–6103CrossRefGoogle Scholar
  128. Scollard DJ, Treacy JJ, Sidebottom HW, Balestra-Garcia C, Laverdet G, LeBras G, MacLeod H, Teton S (1993) Rate constants for the reactions of hydroxyl radicals and chlorine atoms with halogenated aldehydes. J Phys Chem 97:4683–4688CrossRefGoogle Scholar
  129. Scott BF, Macdonald RW, Kannan K, Fisk A, Witter A, Yamashita N, Durham L, Spencer C, Muir DCG (2005) Trifluoroacetate profiles in the Arctic, Atlantic and Pacific Oceans. Environ Sci Technol 39(17):6555–6560CrossRefGoogle Scholar
  130. Scott BF, Spencer C, Mabury SA, Muir DCG (2006) Poly and perfluorinated carboxylates in North American precipitation. Environ Sci Technol 40(23):7167–7174CrossRefGoogle Scholar
  131. Sehested J, Ellermann T, Nielsen OJ, Wallington TJ, Hurley MD (1993) UV absorption spectrum, and kinetics and mechanism of the self reaction of CF3CF2O2 radicals in the gas phase at 295 K. Int J Chem Kinet 25:701–717CrossRefGoogle Scholar
  132. Sellevåg SR, Kelly T, Sidebottom H, Nielsen CJ (2004) A study of the IR and UV–Vis absorption cross-sections, photolysis and OH-initiated oxidation of CF3CHO and CF3CH2CHO. Phys Chem Chem Phys 6:1243–1252CrossRefGoogle Scholar
  133. Shoeib M, Harner T, Ikonomou M, Kannan K (2004) Indoor and outdoor air concentrations and phase partitioning of perfluoroalkyl sulfonamides and polybrominated diphenyl ethers. Environ Sci Technol 38:1313–1320CrossRefGoogle Scholar
  134. Shoeib M, Harner T, Wilford BH, Jones KC, Zhu J (2005) Perfluorinated sulfonamides in indoor and outdoor air and indoor dust: occurrence, partitioning, and human exposure. Environ Sci Technol 39(17):6599–6606CrossRefGoogle Scholar
  135. Shoeib M, Harner T, Vlahos P (2006) Perfluorinated chemicals in the Arctic atmosphere. Environ Sci Technol 40:7577–7583CrossRefGoogle Scholar
  136. Shoeib M, Harner T, Lee SC, Lane D, Zhu J (2008) Sorbent-impregnated polyurethane foam disk for passive air sampling of volatile fluorinated chemicals. Anal Chem 80:675–682CrossRefGoogle Scholar
  137. Simmonds PG, O’Doherty S, Huang J, Prinn R, Derwent RG, Ryall D, Nickless G, Cunnold DM (1998) Calculated trends and the atmospheric abundance of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, and 1-chloro-1,1-difluoroethane using automated in-situ gas chromatography–mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997. J Geophys Res 103(D13):16029–16037CrossRefGoogle Scholar
  138. Singh HB, Thakur AN, Chen YE, Kanakidou M (1996) Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere. Geophys Res Lett 23(12):1529–1532CrossRefGoogle Scholar
  139. Smyth DV, Thompson RS, Gillings E (1994) Sodium trifluoroacetate: toxicity to the marine alga Skeletonema costatum. Report BL4980/B, Brixham Environmental Laboratory, BrixhamGoogle Scholar
  140. Solignac G, Mellouki A, Le Bras G, Barnes I, Benter T (2006a) Reaction of Cl atoms with C6F13CH2OH, C6F13CHO and C3F7CHO. J Phys Chem A 110(13):4450–4457CrossRefGoogle Scholar
  141. Solignac G, Mellouki A, Le Bras G, Barnes I, Benter T (2006b) Reaction of Cl atoms with C6F13CH2OH, C6F13CHO, and C3F7CHO. J Phys Chem A 110:4450–4457CrossRefGoogle Scholar
  142. Solignac G, Mellouki A, Le Bras G, Yujing M, Sidebottom H (2007) The gas phase tropospheric removal of fluoroaldehydes (CxF2X+1CHO, x = 3, 4, 6). Phys Chem Chem Phys 9:4200–4210CrossRefGoogle Scholar
  143. Stemmler K, O’Doherty S, Buchmann B, Reimann S (2004) Emissions of the refrigerants HFC-134a, HCFC-22, and CFC-12 from road traffic: results from a tunnel study (Gubrist Tunnel, Switzerland). Environ Sci Technol 38:1998–2004CrossRefGoogle Scholar
  144. Stock NL, Lau FK, Ellis DA, Martin JW, Muir DCG, Mabury SA (2004) Polyfluorinated telomer alcohols and sulfonamides in the North American troposphere. Environ Sci Technol 38(4):991–996CrossRefGoogle Scholar
  145. Stock NL (2007) Occurrence and fate of perfluoroalkyl contaminants in the abiotic environment. PhD thesis, University of Toronto, Toronto, ON, 252 ppGoogle Scholar
  146. Stock NL, Furdui VI, Muir DCG, Mabury SA (2007) Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination. Environ Sci Technol 41:3529–3536CrossRefGoogle Scholar
  147. Strynar MJ, Lindstrom AB (2008) Perfluorinated compounds in house dust from Ohio and North Carolina, USA. Environ Sci Technol 42:3751–3756CrossRefGoogle Scholar
  148. Sulbaek Andersen MP, Hurley MD, Wallington T, Ball JC, Martin JW, Ellis DA, Mabury SA (2003a) Atmospheric chemistry of C2F5CHO: mechanism of the C2F5C(O)O2 + HO2 reaction. Chem Phys Lett 381:14–21CrossRefGoogle Scholar
  149. Sulbaek Andersen MP, Hurley MD, Wallington TJ, Ball JC, Martin JW, Ellis DA, Mabury SA, Nielsen CJ (2003b) Atmospheric chemistry of C2F5CHO: reaction with Cl atoms and OH radicals, IR spectrum of C2F5C(O)O2NO2. Chem Phys Lett 379:28–36CrossRefGoogle Scholar
  150. Sulbaek Andersen MP, Nielsen CJ, Hurley MD, Ball JC, Wallington TJ, Stevens JE, Martin JW, Ellis DA, Mabury SA (2004a) Atmospheric chemistry of n-CxF2x+1CHO (x = 1,3,4): reaction with Cl atoms, OH radicals and IR spectra of CxF2x+1C(O)O2NO2. J Phys Chem A 108(24):5189–5196CrossRefGoogle Scholar
  151. Sulbaek Andersen MP, Stenby C, Nielsen CJ, Hurley MD, Ball JC, Wallington TJ, Martin JW, Ellis DA, Mabury SA (2004b) Atmospheric chemistry of n-CxF2x+1CHO (x = 1,3,4): mechanism of the CxF2x+1C(O)O2 + HO2 reaction. J Phys Chem A 108(30):6325–6330CrossRefGoogle Scholar
  152. Sulbaek Andersen MP, Nielsen CJ, Hurley MD, Ball JC, Wallington TJ, Ellis DA, Martin JW, Mabury SA (2005a) Atmospheric chemistry of 4:2 fluorotelomer alcohol (n-C4F9CH2CH2OH): products and mechanism of Cl atom initiated oxidation in the presence of NOx. J Phys Chem A 109(9):1849–1856CrossRefGoogle Scholar
  153. Sulbaek Andersen MP, Nielsen OJ, Toft A, Nakayama T, Matsumi Y, Waterland RL, Buck RC, Hurley MD, Wallington TJ (2005b) Atmospheric chemistry of CxF2x+1CH=CH2 (x = 1,2,4,6, and 8): kinetics of gas-phase reactions with Cl atoms, OH radicals, and O3. J Photoch Photobio A 176:124–128CrossRefGoogle Scholar
  154. Sulbaek Andersen MP, Toft A, Nielsen OJ, Hurley MD, Wallington TJ, Chishima H, Tonokura K, Mabury SA, Martin JW, Ellis DA (2006) Atmospheric chemistry of perfluorinated aldehyde hydrates (n-CxF2x+1CH(OH)2, x = 1,3,4): hydration, dehydration, and kinetics and mechanism of Cl atom and OH radical initiated oxidation. J Phys Chem A 110:9854–9860CrossRefGoogle Scholar
  155. Talukdar R, Mellouki A, Gierczak T, Burkholder JB, McKeen SA, Ravishankara AR (1991) Atmospheric fate of CF2H2, CH3CF3, CHF2CF3, and CH3CFCl2: rate coefficients for reactions with OH and UV absorption cross sections of CH3CFCl2. J Phys Chem 95:5815–5821CrossRefGoogle Scholar
  156. Tang X, Madronich S, Wallington T, Calamari D (1998) Changes in tropospheric composition and air quality. J Photoch Photobio B 46:83–95CrossRefGoogle Scholar
  157. Taves DR (1968) Evidence that there are two forms of fluoride in human serum. Nature 217:1050–1051CrossRefGoogle Scholar
  158. The European Parliament and the Council of the European Union (2006) Air pollution: emissions and fluorinated greenhouse gases from motor vehicle air-conditioning systems in Directive 2006/40/ECGoogle Scholar
  159. Thompson RS, Stewart KM, Gillings E (1994) Trifluoroacetic acid: accumulation from aqueous solution by the roots of Sunflower (Helianthus annuus). Report BL5042/B, Brixham Environmental Laboratory, BrixhamGoogle Scholar
  160. Thompson RS, Stewart KM, Gillings E (1995) Sodium trifluoroacetate: toxicity to wheat (Triticum aestivum) in relation to bioaccumulation (by aqueous exposure of the roots). Report BL5473/B, Brixham Environmental Laboratory, BrixhamGoogle Scholar
  161. Tokuhashi K, Chen L, Kutsuna S, Uchimaru T, Sugie M, Sekiya A (2004) Environmental assessment of CFC alternatives rate constants for the reactions of OH radicals with fluorinated compounds. J Fluorine Chem 125:1801–1807CrossRefGoogle Scholar
  162. Tomy G, Budakowski W, Halldorson T, Helm PA, Stern GA, Friesen K, Pepper K, Tittlemier SA, Fisk AT (2004) Fluorinated organic compounds in an Eastern Arctic food web. Environ Sci Technol 38(24):6475–6481CrossRefGoogle Scholar
  163. Tromp TK, Ko MKW, Rodriguez JM, Sze ND (1995) Potential accumulation of a CFC-replacement degradation product in seasonal wetlands. Nature 376:327–330CrossRefGoogle Scholar
  164. Tuazon E, Atkinson R, Corchnoy S (1992) Rate constants for the gas-phase reactions of Cl atoms with a series of hydrofluorocarbons and hydrochlorofluorocarbons at 298±2 K. Int J Chem Kinet 24(7):639–648CrossRefGoogle Scholar
  165. Tuazon EC, Atkinson R (1993a) Tropospheric transformation products of a series of hydrofluorocarbons and hydrochlorofluorocarbons. J Atmos Chem 17:179–199CrossRefGoogle Scholar
  166. Tuazon EC, Atkinson R (1993b) Tropospheric degradation products of CH2FCF3 (HFC-134a). J Atmos Chem 16:301–312CrossRefGoogle Scholar
  167. UNEP (2000) The Montreal Protocol on substances that deplete the ozone layer, United Nations Environmental Programme, Nairobi, KenyaGoogle Scholar
  168. United States Environmental Protection Agency (2006) 2010/15 PFOA Stewardship Program. http://www.epa.gov/oppt/pfoa/pubs/pfoastewardship.htm
  169. Velders GJM, Madronich S, Clerbaux C, Derwent R, Grutter M, Hauglustaine D, Incecik S, Ko M, Libre J-M, Nielsen OJ, Stordal F, Zhu T (2005) Chemical and radiative effects of halocarbons and their replacement compounds. In: B. Metz et al. (eds) IPCC/TEAP special report: safeguarding the ozone layer and the global climate system, Cambridge University Press, CambridgeGoogle Scholar
  170. Verreault J, Berger U, Gabrielsen GW (2007) Trends of perfluorinated alkyl substances in herring gull eggs from two coastal colonies in northern Norway: 1983–2003. Environ Sci Technol 41:6671–6677CrossRefGoogle Scholar
  171. Vesine E, Bossoutrot V, Mellouki A, Le Bras G, Wenger J, Sidebottom H (2000) Kinetic and mechanistic study of OH- and Cl-initiated oxidation of two unsaturated HFCs: C4F9CH=CH2 and C6F13CH=CH2. J Phys Chem A 104:8512–8520CrossRefGoogle Scholar
  172. Wallington TJ, Hurley MD (1992) A kinetic study of the reaction of chlorine atoms with CF3CHCl2, CF3CH2F, CFCl2CH3, CF2ClCH3, CHF2CH3, CH3D, CH2D2, CHD3, CD4, and CD3Cl at 295±2 K. Chem Phys Lett 189(4,5):437–442CrossRefGoogle Scholar
  173. Wallington TJ, Hurley MD, Ball JC, Kaiser EW (1992) Atmospheric chemistry of hydrofluorocarbon 134a: fate of the alkoxy radical CF3CFHO. Environ Sci Technol 26(7):1318–1324CrossRefGoogle Scholar
  174. Wallington TJ, Hurley MD (1993) A kinetic study of the reaction of chlorine and fluorine atoms with CF3CHO at 295 ± 2 K. Int J Chem Kinet 25:819–824CrossRefGoogle Scholar
  175. Wallington TJ, Schneider WF, Worsnop DR, Nielsen OJ, Sehested J, Debruyn WJ, Shorter JA (1994) The environmental impact of CFC replacements – HFCs and HCFCs. Environ Sci Technol 28:320A–326ACrossRefGoogle Scholar
  176. Wallington TJ, Hurley MD, Fracheboud JM, Orlando JJ, Tyndall GS, Sehested J, Møgelberg TE, Nielsen OJ (1996) Role of excited CF3CFHO radicals in the atmospheric chemistry of HFC-134a. J Phys Chem 100:18116–18122CrossRefGoogle Scholar
  177. Wallington TJ, Hurley MD, Fedotov V, Morrell C, Hancock G (2002) Atmospheric chemistry of CF3CH2OCHF2 and CF3CHClOCHF2: kinetics and mechanisms of reaction with Cl atoms and OH radicals and atmospheric fate of CF3C(O)HOCHF2 and CF3C(O)ClOCHF2 radicals. J Phys Chem A 106:8391–8398CrossRefGoogle Scholar
  178. Wallington TJ, Hurley MD, Xia J, Wuebbles DJ, Sillman S, Ito A, Penner JE, Ellis DA, Martin JW, Mabury SA, Nielsen CJ, Sulbaek Andersen MP (2006) Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. Environ Sci Technol 40(3):924–930CrossRefGoogle Scholar
  179. Wania F (2007) Global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ Sci Technol 41:4529–4535CrossRefGoogle Scholar
  180. Warren R, Gierczak T, Ravishankara AR (1991) A study of O(1D) reactions with CFC substitutes. Chem Phys Lett 183:403–409CrossRefGoogle Scholar
  181. Waterland RL, Hurley MD, Misner JA, Wallington TJ, Melo SML, Strong K, Dumoulin R, Castera L, Stock NL, Mabury SA (2005) Gas phase UV and IR absorption spectra of CF3CH2CH2OH and F(CF2CF2)xCH2CH2OH (x = 2, 3, 4). J Fluorine Chem 126:1288–1296CrossRefGoogle Scholar
  182. Waterland RL, Dobbs KD (2007) Atmospheric chemistry of linear perfluorinated aldehydes: dissociation kinetics of CnF2n+1CO radicals. J Phys Chem A 111:2555–2562CrossRefGoogle Scholar
  183. Watson RT, Ravishankara AR, Machado G, Wagner S, Davis DD (1979) A kinetics study of the temperature dependence of the reactions of OH(2P) with CF3CHCl2, CF3CHClF, and CF2ClCH2Cl. Int J Chem Kinet 11:187–197CrossRefGoogle Scholar
  184. Wild O, Rattigan OV, Jones RL, Pyle JA, Cox RA (1996) Two-dimensional modelling of some CFC replacement compounds. J Atmos Chem 25:167–199CrossRefGoogle Scholar
  185. Woodrow JE, Crosby DG, Mast T, Moilanen KW, Seiber JN (1978) Rates of transformation of trifluralin and parathion vapors in air. J Agr Food Chem 26:1312–1316CrossRefGoogle Scholar
  186. Yamada T, Fang TD, Taylor PH, Berry RJ (2000) Kinetics and thermochemistry of the OH radical reaction with CF3CCl2H and CF3CFClH. J Phys Chem A 104(21):5013–5022CrossRefGoogle Scholar
  187. Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T (2005) A global survey of perfluorinated acids in oceans. Mar Pollut Bull 51:658–668CrossRefGoogle Scholar
  188. Yarwood G, Kemball-Cook S, Keinath M, Waterland RL, Korzeniowski SH, Buck RC, Russell MH, Washburn ST (2007) High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere. Environ Sci Technol 41:5756–5762CrossRefGoogle Scholar
  189. Young CJ, Donaldson DJ (2007) Overtone-induced degradation of perfluorinated alcohols in the atmosphere. J Phys Chem A 111:13466–13471CrossRefGoogle Scholar
  190. Young CJ, Furdui VI, Franklin J, Koerner RM, Muir DCG, Mabury SA (2007) Perfluorinated acids in Arctic snow: new evidence for atmospheric formation. Environ Sci Technol 41:3455–3461CrossRefGoogle Scholar
  191. Young CJ, Hurley MD, Wallington TJ, Mabury SA (2008) Atmospheric chemistry of 4:2 fluorotelomer iodide (n-C4F9CH2CH2I): kinetics and products of photolysis and reaction with OH radicals and Cl atoms. J Phys Chem A 112:13542–13548CrossRefGoogle Scholar
  192. Young CJ, Hurley MD, Wallington TJ, Mabury SA (2009a) Atmospheric chemistry of CF3CF2H and CF3CF2CF2CF2H: kinetics and products of gas-phase reactions with Cl atoms and OH radicals, infrared spectra, and formation of perfluorocarboxylic acids. Chem Phys Lett 473:251–256CrossRefGoogle Scholar
  193. Young CJ, Hurley MD, Wallington TJ, Mabury SA (2009b) Atmospheric chemistry of perfluorobutenes (CF3CF=CFCF3 and CF3CF2CF=CF2): kinetics and mechanisms of reactions with OH radicals and chlorine atoms, IR spectra, global warming potentials, and oxidation to perfluorocarboxylic acids. Atmos Environ 43:3717–3724Google Scholar
  194. Zellner R, Bednarek G, Hoffmann A, Kohlmann JP, Mörs V, Saathoff H (1994) Rate and mechanism of the atmospheric degradation of 2H-heptafluoropropane (HFC-227). Ber Bunsen-Ges Phys Chem 98:141–146CrossRefGoogle Scholar
  195. Zhang Z, Liu R, Huie RE, Kurylo MJ (1991) Rate constants for the gas phase reactions of the OH radical with CF3CF2CHCl2 (HCFC-225ca) and CF2ClCF2CHClF (HCFC-225cb). Geophys Res Lett 18:5–7CrossRefGoogle Scholar
  196. Zhang Z, Huie RE, Kurylo MJ (1992) Rate constants for the reactions of OH with CH3CFCl2 (HCFC-141b), CH3CF2Cl (HCFC-142b), and CH2FCF3 (HFC-134a). J Phys Chem 4:1533–1535CrossRefGoogle Scholar
  197. Zhang Z, Padmaja S, Saini RD, Huie RE, Kurylo MJ (1994) Reactions of hydroxyl radicals with several hydrofluorocarbons: the temperature dependencies of the rate constants for CHF2CF2CH2F (HFC-245ca), CF3CHFCHF2 (HFC-236ea), CF3CHFCF3 (HFC-227ea), and CF3CH2CH2CF3 (HFC-256ffa). J Phys Chem 98:4312–4315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations