Skip to main content

Comparing Stone Tool Resharpening Trajectories with the Aid of Elliptical Fourier Analysis

  • Chapter
  • First Online:
New Perspectives on Old Stones

Abstract

Resharpening has long played a confusing role in the history of research on lithic variability. In this chapter, I argue that, far from confounding issues of variability, resharpening can be used as a classificatory principle because it reflects human technical choices related to repeated uses of a tool. The advantage that resharpening offers is that of a mathematically suitable study object, through the investigation of shape change along the continuum of size reduction. Building upon a rich history of research in both biology and prehistoric archaeology, I present a variant of a new method for comparing resharpening trajectories, using elliptical Fourier analysis (EFA) and principal components analysis to compare the slopes of allometric regressions. The theoretical presentation is followed by a worked example using bifacial tools from two European Middle Paleolithic sites: Pech de l’Azé I (France) and Buhlen III (Germany).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The elliptical Fourier analysis (EFA) algorithm, invented by Kuhl and Giardina (1982), actually expresses the outline in terms of two functions representing incremental steps in the x and y directions, functions which are then subjected to Fourier analysis themselves.

  2. 2.

    See Iovita (2009) for further details related to the photographing setup, as well as the outline extraction and normalization.

  3. 3.

    All subsequent analyses were conducted using the R statistical programming environment (RDevelopmentCoreTeam 2008).

  4. 4.

    The R code for the inverse Fourier transformation is from Claude (2008).

References

  • Ahler, S., 1971. Projectile Point Form and Function at Rodgers Shelter, Missouri. Missouri Archaeological Society Research Series no. 8, University of Missouri, Columbia.

    Google Scholar 

  • Alimen, H. and Vignal, A., 1952. Etude statistique de biface acheuleens. Essai d’archeometrie. Bulletin de la Société Préhistorique Française 49: 56–72.

    Article  Google Scholar 

  • Andrefsky, W., 2006. Experimental and archaeological verification of an index of retouch for hafted bifaces. American antiquity 71: 743–757.

    Article  Google Scholar 

  • Ashton, N. and White, M., 2003. Bifaces and raw materials: flexible flaking in the British Early Paleolithic. In Multiple Approaches to the Study of Bifacial Technologies, edited by M. Soressi and H.L. Dibble, pp. 109–124. University Museum Monographs. University of Pennsylvania Press, Philadelphia.

    Google Scholar 

  • Blades, B.S., 1999. Aurignacian lithic economy and early modern human mobility: new perspectives from classic sites in the Vezere valley of France. Journal of Human Evolution 37: 91–120.

    Article  Google Scholar 

  • Boëda, E., 1995. Steinartefakt-Produktionssequenzen im Micoquien der Kulna-Höhle. Quartär 45: 75–98.

    Google Scholar 

  • Bookstein, F.L., 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 567–585.

    Article  Google Scholar 

  • Bookstein, F.L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bookstein, F.L., 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1: 225–243.

    Article  Google Scholar 

  • Bordes, F., 1954. Les gisements du Pech de l’Azé (Dordogne). I. Le Moustérien de tradition acheuléenne (avec une note paléontologique de J. Bouchoud). L’Anthropologie 58: 401–432.

    Google Scholar 

  • Bordes, F., 1979, Typologie du Paléolithique Ancien et Moyen. Cahiers du Quaternaire 1. C.N.R.S., Bordeaux.

    Google Scholar 

  • Bosinski, G., 1967. Die mittelpaläolithischen Funde im westlichen Mitteleuropa. Fundamenta Böhlau-Verlag, Köln and Graz.

    Google Scholar 

  • Brooks, A.S., Nevell, L., Yellen, J.E. and Hartman, G., 2006. Projectile technologies of the African MSA: implications for modern human origins. In Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age, edited by E. Hovers and S.L. Kuhn, pp. 233–255. Springer, Netherlands.

    Chapter  Google Scholar 

  • Buchanan, B., 2006. An analysis of Folsom projectile point resharpening using quantitative comparisons of form and allometry. Journal of Archaeological Science 33: 185–199.

    Article  Google Scholar 

  • Cahen, D., 1975. Le site archéologique de La Kamoa (Région du Shaba, République du Zaire), de l’Age de la Pierre Ancienne à l’Age du Fer. Annales, Serie in 8c, Sciences Humaines 84. Musée Royal de l’Afrique Centrale, Tervuren.

    Google Scholar 

  • Cardini, A. and Slice, D.E., 2004. Mandibular shape in the genus Marmota (Rodentia, Sciuridae): a preliminary analysis using outlines. Italian Journal of Zoology 71: 17–25.

    Article  Google Scholar 

  • Clarkson, C., 2002. An index of invasiveness for the measurement of unifacial and bifacial retouch: a theoretical, experimental and archaeological verification. Journal of Archaeological Science 29: 65–75.

    Article  Google Scholar 

  • Claude, J., 2008. Morphometrics with R. Use R. Springer, New York.

    Google Scholar 

  • Cooper, H.M., 1954. Material culture of Australian Aborigines Part 1. Progressive modification of a stone artefact. Records of the Australian Museum 11: 91–97.

    Google Scholar 

  • Crompton, R.H. and Gowlett, J.A.J., 1993. Allometry and multidimensional form in Acheulean bifaces from Kilombe, Kenya. Journal of Human Evolution 25: 175–199.

    Article  Google Scholar 

  • Daegling, D.J. and Jungers, W.L., 2000. Elliptical Fourier analysis of symphyseal shape in great ape mandibles. Journal of Human Evolution 39: 107–122.

    Article  Google Scholar 

  • Dibble, H.L., 1984. Interpreting typological variation of Middle Paleolithic scrapers: function, style, or sequence of reduction? Journal of Field Archaeology 11: 431–436.

    Article  Google Scholar 

  • Dibble, H.L., 1987. The interpretation of Middle Palaeolithic scraper morphology. American Antiquity 52: 109–117.

    Article  Google Scholar 

  • Dibble, H.L., 1995. Middle Paleolithic scraper reduction: background, clarification, and review of evidence to data. Journal of Archaeological Method and Theory 2: 299–368.

    Article  Google Scholar 

  • Edgar, R.K., 2007. CartesianDiatom-EFA: software for Elliptical Fourier Analysis. Version 1.1. www.diatom.org.

  • Ehrlich, R. and Weinberg, B., 1970. An exact method for characterization of grain shape. Journal of Sedimentary Petrology 40: 205–212.

    Google Scholar 

  • Eren, M.I., Domínguez-Rodrigo, M., Kuhn, S.L., Adler, D.S., Le, I. and Bar-Yosef, O., 2005. Defining and measuring reduction in unifacial stone tools. Journal of Archaeological Science 32: 1190–1201.

    Article  Google Scholar 

  • Ferson, S., Rohlf, F.J., and Koehn, R.K., 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology 34: 59–68.

    Article  Google Scholar 

  • Flenniken, J.J. and Raymond, A.W., 1986. Morphological projectile point typology: replication, experimentation, and technological analysis. American Antiquity 51: 603–614.

    Article  Google Scholar 

  • Friess, M. and Baylac, M., 2003. Exploring artificial cranial deformation using elliptic Fourier analysis of Procrustes aligned outlines. American Journal of Physical Anthropology 122: 11–22.

    Article  Google Scholar 

  • Frison, G.C., 1968. A functional analysis of certain chipped stone tools. American Antiquity 33: 149–155.

    Article  Google Scholar 

  • Gero, J.M. and Mazzullo, J., 1984. Analysis of artifact shape using Fourier series in closed form. Journal of Field Archaeology 11: 315–322.

    Google Scholar 

  • Good, P.I., 2005. Introduction to Statistics Through Resampling Methods and R/S-PLUS. Wiley-Interscience, New York.

    Book  Google Scholar 

  • Goodall, C., 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society. Series B 53: 285–339.

    Google Scholar 

  • Granlund, G.H., 1972. Fourier preprocessing for hand print character recognition. IEEE Trans Comput C-21: 195–201.

    Article  Google Scholar 

  • Gunz, P., Mitteroecker, P. and Bookstein, F.L., 2005. Semilandmarks in three dimensions. In Modern Morphometrics in Physical Anthropology, edited by D.E. Slice, pp. 73–98. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Hayden, B., 1989. From chopper to celt: the evolution of resharpening techniques. In Time, Energy and Stone Tools, edited by R. Torrence, pp. 7–16. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hiscock, P., 1996. Transformations of Upper Palaeolithic implements in the Dabba industry from Haua Fteah (Libya). Antiquity 70: 657–664.

    Google Scholar 

  • Hiscock, P. and Attenbrow, V., 2003. Early Australian implement variation: a reduction model. Journal of Archaeological Science 30: 239–249.

    Article  Google Scholar 

  • Hoffman, C., 1985. Projectile point maintenance and typology: assessment with factor analysis and canonical correlation. In For Concordance in Archaeological Analysis: Bridging Data Structure, Quantitative Technique, and Theory, edited by C. Carr, pp. 566–612. Wesport Press, Kansas City, MO.

    Google Scholar 

  • Holmes, W.H., 1891. Manufacture of stone arrow points. American Anthropologist 4: 49–58.

    Google Scholar 

  • Holmes, W.H., 1892. Modern quarry refuse and the Paleolithic theory. Science 20: 295–297.

    Article  Google Scholar 

  • Iovita, R.P., 2009. Ontogenetic scaling and lithic systematics: method and application. Journal of Archaeological Science 36: 1447–1457.

    Article  Google Scholar 

  • Isaac, G.L., 1977. Olorgesailie. Archaeological Studies of a Middle Pleistocene Lake Basin in Kenya. University of Chicago Press, Chicago.

    Google Scholar 

  • Jelinek, A.J., 1991. Observations on reduction patterns and raw materials in some Middle Paleolithic industries in the Perigord. In Raw Material Economies Among Prehistoric Hunter-Gatherers, edited by A. Montet-White and S. Holen, pp. 7–32. University of Kansas Publication in Anthropology, 19. University of Kansas, Lawrence.

    Google Scholar 

  • Jolicoeur, P., 1963. The multivariate generalization of the allometry equation. Biometrics 19: 497–499.

    Article  Google Scholar 

  • Jöris, O., 2001. Der spätmittelpaläolithische Fundplatz Buhlen (Grabungen 1966-69). Stratigraphie, Steinartefakte und Fauna des Oberen Fundplatzes. Universitätsforsch. Prähist. Arch. 73. Bonn.

    Google Scholar 

  • Jöris, O., 2006. Bifacially Backed Knives (Keilmesser) in the Central European Middle Palaeolithic. In Axe-Age: Acheulian Tool-Making from Quarry to Discard, edited by N. Goren-Inbar and G. Sharon, pp. 287–310. Equinox, London; Oakville, CT.

    Google Scholar 

  • Kendall, D.G., 1984. Shape-manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16: 81–121.

    Article  Google Scholar 

  • Kuhl, F.P. and Giardina, C.R., 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236–258.

    Article  Google Scholar 

  • Kuhn, S.L., 1990. Geometric index of reduction for unifacial stone tools. Journal of Archaeological Science 17: 583–593.

    Article  Google Scholar 

  • Kuhn, S.L., 1991. “Unpacking” reduction: lithic raw material economy in the Mousterian of west-central Italy. Journal of Anthropological Archaeology 10: 76–106.

    Article  Google Scholar 

  • Lestrel, P.E., 1982. A Fourier analytic procedure to describe complex morphological shapes. Progress in Clinical and Biological Research 101: 393–409.

    Google Scholar 

  • Lestrel, P.E. and Brown, H.D., 1976. Fourier analysis of adolescent growth of the cranial vault: a longitudinal study. Human Biology 48: 517–528.

    Google Scholar 

  • Lycett, S.J., von Cramon-Taubadel, N. and Foley, R.A., 2006. A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: a description, test and empirical examples of application. Journal of Archaeological Science 33: 847–861.

    Article  Google Scholar 

  • Maddux, S.D. and Franciscus, R.G., 2009. Allometric scaling of infraorbital surface topography in Homo. Journal of Human Evolution 56: 161–174.

    Article  Google Scholar 

  • Marchal, F., 2000. A new morphometric analysis of the hominid pelvic bone. Journal of Human Evolution 38: 347–365.

    Article  Google Scholar 

  • McBrearty, S. and Brooks, A.S., 2000. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. Journal of Human Evolution 39: 453–563.

    Article  Google Scholar 

  • McPherron, S.P., 1995. A re-examination of the British biface data. Lithics 16: 47–63.

    Google Scholar 

  • McPherron, S.P., 1999. Ovate and pointed handaxe assemblages: two points make a line. Préhistoire Européenne 14: 9–32.

    Google Scholar 

  • McPherron, S.P., 2000. Handaxes as a measure of the mental capabilities of early hominids. Journal of Archaeological Science 27: 655–663.

    Article  Google Scholar 

  • McPherron, S.P., 2003. Technological and typological variability in the bifaces from Tabun Cave, Israel. In Multiple Approaches to the Study of Bifacial Technologies, edited by M. Soressi and H.L. Dibble, pp. 55–75. University Museum Monographs. University of Pennsylvania Museum of Archaeology and Anthropology Publications, Philadelphia.

    Google Scholar 

  • Mellars, P.A., 2002. Archaeology and the origins of modern humans: European and African perspectives. In The Speciation of Modern Homo sapiens, edited by T.J. Crow, pp. 31–48. Proceedings of the British Academy. The British Academy, London.

    Google Scholar 

  • Mellars, P.A. and Grün, R., 1991. A comparison of the Electron Spin Resonance and thermoluminescence dating methods: the results of ESR dating at Le Moustier (France). Cambridge Archaeological Journal 1: 269–276.

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K. and Bookstein, F.L., 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46: 679–697.

    Article  Google Scholar 

  • Montet-White, A. 1973. Le Malpas Rockshelter: A Study of Late Paleolithic Technology in Its Environmental Setting. Publications in anthropology 4. University of Kansas, Lawrence.

    Google Scholar 

  • Monti, L., Baylac, M. and Lalanne-Cassou, B., 2001. Elliptic Fourier analysis of the form of genitalia in two Spodoptera species and their hybrids (Lepidoptera: Noctuidae). Biological Journal of the Linnean Society 72: 391–400.

    Article  Google Scholar 

  • Nowell, A., Park, K., Metaxas, D. and Park, J., 2003. Deformation modeling: a methodology for analyzing handaxe morphology and variability. In Multiple Approaches to the Study of Bifacial Technologies, edited by M. Soressi and H.L. Dibble, pp. 193–208. University of Pennsylvania Museum of Archaeology and Anthropology Publications, Philadelphia.

    Google Scholar 

  • Penin, X., Berge, C. and Baylac, M., 2002. Ontogenetic study of the skull in modern humans and the common chimpanzees: neotenic hypothesis reconsidered with a tridimensional Procrustes analysis. American Journal of Physical Anthropology 118: 50–62.

    Article  Google Scholar 

  • RDevelopmentCoreTeam, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Richter, J., 2004. Copies of flakes: operational sequences of foliate pieces from Buran-Kaya III level B1. In The Middle Paleolithic and Early Upper Paleolithic of Eastern Crimea, edited by V. Chabai, K. Monigal, and A.E. Marks, pp. 233–248. ERAUL, Liège

    Google Scholar 

  • Roe, D.A., 1964. The British Lower and Middle Palaeolithic: some problems, methods of study, and preliminary results. Proceedings of the Prehistoric Society 30: 245–267.

    Google Scholar 

  • Roe, D.A., 1968. British Lower and Middle Palaeolithic handaxe groups. Proceedings of the Prehistoric Society 34: 1–82.

    Google Scholar 

  • Rohlf, F.J., 2008. tpsDig2. Version 2.12, http://life.bio.sunysb.edu/morph/morphmet/tpsdig2w32.exe.

  • Rolland, N. and Dibble, H.L., 1990. A new synthesis of Middle Paleolithic assemblage variability. American Antiquity 55: 480–499.

    Article  Google Scholar 

  • Saragusti, I., Karasik, A., Sharon, I. and Smilansky, U., 2005. Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis. Journal of Archaeological Science 23: 841–853.

    Article  Google Scholar 

  • Saragusti, I., Sharon, I., Katzenelson, O., Avnir, D., 1998. Quantitative analysis of the symmetry of artefacts: Lower Paleolithic handaxes. Journal of Archaeological Science 25: 817–825.

    Article  Google Scholar 

  • Sheets, H. D., Covino, K., Panasiewicz, J., Morris, S., 2006. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology 3: 15.

    Article  Google Scholar 

  • Shott, M.J., 1989. On tool-class use lives and the formation of archaeological assemblages. American Antiquity 54: 9–30.

    Article  Google Scholar 

  • Shott, M.J., 1995. How much is a scraper? Curation, use rates, and the formation of scraper assemblages. Lithic Technology 20: 53–72.

    Google Scholar 

  • Shott, M.J., 1996a. An exegesis of the curation concept. Journal of Anthropological Research 52: 259–280.

    Google Scholar 

  • Shott, M.J., 1996b. Stage versus continuum in the debris assemblage from production of a fluted biface. Lithic Technology 21: 6–22.

    Google Scholar 

  • Shott, M., 1997. Stones and shafts redux: the metric discrimination of chipped-stone dart and arrow points. American Antiquity 62: 86–101.

    Article  Google Scholar 

  • Shott, M. and Sillitoe, P., 2005. Use life and curation in New Guinea experimental used flakes. Journal of Archaeological Science 32: 653–663.

    Article  Google Scholar 

  • Shott, M.J. and Weedman, K.J., 2007. Measuring reduction in stone tools: an ethnoarchaeological study of Gamo hidescrapers from Ethiopia. Journal of Archaeological Science 34: 1016–1035.

    Article  Google Scholar 

  • Soressi, M., 2002. Le Moustérien de tradition acheuléenne du sud-ouest de la France. Discussion sur la signification du faciès à partir de l’étude comparée de quatre sites: Pech-de-l’Azé I, Le Moustier, La Rochette et la Grotte XVI. unpublished PhD dissertation, Université de Bordeaux I,

    Google Scholar 

  • White, M.J., 1998. On the significance of Acheulean biface variability in Southern Britain. Proceedings of the Prehistoric Society 66: 1–28.

    Google Scholar 

  • White, M.J. and Pettitt, P.B., 1995. Technology of early Palaeolithic Western Europe: an heuristic framework. Lithics 16: 27–40.

    Google Scholar 

  • Wynn, T. and Tierson, F., 1990. Regional comparison of the shapes of later Acheulean handaxes. American Anthropologist 92: 73–84.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the editors for inviting me to submit this paper, as well as the two anonymous reviewers whose comments significantly improved the quality of this manuscript. Funding for the data collection was provided by the National Science Foundation (U.S.A.), grant BCS#0624962, the Kolb Foundation, (University of Pennsylvania Museum of Archaeology and Anthropology), and the University of Pennsylvania School of Arts and Sciences and Department of Anthropology. Finally, I wish to thank Dr. Alain Turq (Musée National de Préhistoire, Les-Eyzies-de-Tayac, France) and Dr. Irina Görner (Hessisches Landesmuseum Kassel, Germany) for access to the collections from Pech de l’Azé I and Buhlen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ioviţă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ioviţă, R. (2010). Comparing Stone Tool Resharpening Trajectories with the Aid of Elliptical Fourier Analysis. In: Lycett, S., Chauhan, P. (eds) New Perspectives on Old Stones. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6861-6_10

Download citation

Publish with us

Policies and ethics