Biomechanics pp 309-352 | Cite as

Mass Transport in Capillaries, Tissues, Interstitial Space, Lymphatics, Indicator Dilution Method, and Peristalsis

  • Y. C. Fung


In this chapter some applications of the basic equations derived in Chap. 8 are demonstrated. Flow across the walls of the capillary and lymph vessels is discussed in Sec. 9.2. Methods for measuring the permeability of vessel walls are presented in Sec. 9.3. A model of oxygen delivery and consumption in tissues is given in Sec. 9.4. Fluid movement in interstitial space is discussed in Sec. 9.5.


Osmotic Pressure Interstitial Fluid Interstitial Space Lymph Flow Interstitial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, K.N. and Salathé, E.P. (1976). A theory of interstitial fluid motion and its implications for capillary exchange. Microvasc. Res. 12: 103–119.CrossRefGoogle Scholar
  2. Apelblat, A., Katzir-Katchalsky, A., and Silberberg, A. (1974). A mathematical analysis of capillary-tissue fluid exchange. Biorheology, 11: 1–49.Google Scholar
  3. Arrhenius, S. (1889). Einfache Ableitung der Beziehung zwischen osmotischem Druck und Erniedrigung der Dampfspannung. Z. Phys. Chem. 1: 115–119.Google Scholar
  4. Arturson, G. (1971). Effect of colloids on transcapillary exchange. In Hemodilution: Theoretical Basis and Clinical Application, ( K. Messmer and H. Schmid-Schoenbein, eds.), pp. 84–104. S. Karger, Basel.Google Scholar
  5. Aschheim, E. (1977). Passage of substances across the walls of blood vessels. In Microcirculation, (G. Kaley and B.M. Altura, eds.), Vol. 1, Ch. 10, University Park Press, Baltimore, pp. 213–249.Google Scholar
  6. Baez, S. (1960). Flow properties of lymph: A microcirculatory study. In Flow Properties of Blood and Other Biological Systems, ( A.L. Copley and G. Stainsby, eds), pp. 398–411, Pergamon Press, New York.Google Scholar
  7. Bassingthwaighte, J.B., Knopp, T.J., and Hazelrig, J.B. (1970). A concurrent flow model for capillary-tissue exchange. In Capillary Permeability, (C. Crone and N.A. Lassen, eds.), Academic Press, New York.Google Scholar
  8. Bloch, I. (1943). Some theoretical considerations concerning the interchange of metabolites between capillaries and tissue. Bull. Math. Biophysics, 5: 1–14.CrossRefGoogle Scholar
  9. Blum. J.J. (1960). Concentration profiles in and around capillaries. Am. J. Physiol. 198: 991–998.Google Scholar
  10. Cliff, W.J. and Nicoll, P.A. (1970). Structure and function of lymphatic vessels of the bat’s wing. Quart J. Exp. Physiol. 55: 112–121.Google Scholar
  11. Crone, C. and Lassen, N.A. (1970). Capillary Permeability, Academic Press, New York.Google Scholar
  12. Curry, F.E. (1984). Mechanics and thermodynamics of transcapillary exchange. In Handbook of Physiology, Sec. 2., Cardiovascular System, Vol. IV, Part I, ( E.M. Renkin and C.C. Michel, eds.) Amer. Physiol. Soc., Bethesda, MD.Google Scholar
  13. Deen, W.M., Robertson, C.R., and Brenner, B.M. (1972). A model of glomerular ultrafiltration in the rat. Amer. J. Physiol. 223: 1178–1183.Google Scholar
  14. Duling, B.R. and Berne, R.M. (1970). Longitudinal gradients in periarteriolar oxygen tension. Circ. Res. 27: 669–678.CrossRefGoogle Scholar
  15. Fung, Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  16. Fung, Y.C. (1970). Mathematical representation of the mechanical properties of the heart muscle. J. Biomech. 3: 381–404.CrossRefGoogle Scholar
  17. Fung, Y.C. (1971). Peristaltic pumping: a bioengineering model. In Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis. ( S. Boyarsky, C.W. Gottschalk, E.A. Tanagho, and P.D. Zimskind, eds). Academic Press, New York, pp. 177–198.Google Scholar
  18. Fung, Y.C. (1972). Theoretical pulmonary microvascular impedance. Annals of Biomed. Eng. 1: 221–245.CrossRefGoogle Scholar
  19. Fung, Y.C. (1974). Fluid in the interstitial space of the pulmonary alveolar sheet. Microvasc. Res. 7: 89–113.CrossRefGoogle Scholar
  20. Fung, Y.C. (1981). Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.Google Scholar
  21. Fung, Y.C. and Yih, C.S. (1968). Peristaltic transport. J. Appl. Mech. 35, Ser. E. 669–675.Google Scholar
  22. Fung, Y.C. and Sobin, S.S. (1972). Elasticity of the pulmonary alveolar sheet. Circ. Res. 30: 451–469.CrossRefGoogle Scholar
  23. Fung, Y.C. and Tang, H.T. (1975). Solute distribution in the flow in a channel bounded by porous layers. J. Appl. Mech. 42: 531–535.ADSCrossRefGoogle Scholar
  24. Fung, Y.C., Zweifach, B.W., and Intaglietta, M. (1966). Elastic environment of the capillary bed. Circ. Res. 14: 441–461.CrossRefGoogle Scholar
  25. Goresky, C.A., Cronin, R.F.P., and Wangel, B.E. (1969). Indicator dilution measurements of extravascular water in the lungs. J. Clin. Invest. 48: 487–501.CrossRefGoogle Scholar
  26. Granger, H.J. and Shepherd, A.P. (1979). Dynamics and control of the microcirculation. In Advances in Biomedical Engineering, Vol. 7, pp. 1–63, ( J.H.U. Brown, Ed.), Academic Press, New York.Google Scholar
  27. Gross, J.F. and Popel, A. (Eds.) (1980). Mathematics of Microcirculation Phenomena, Raven Press, New York.Google Scholar
  28. Guyton, A.C. (1963). A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ. Res. 12: 399–414.CrossRefGoogle Scholar
  29. Guyton, A.C., Barber, B.J., and Moffatt, D.S. (1981). Theory of interstitial pressures. In Tissue Fluid Pressure and Composition ( A. Hargens, ed.), pp. 11–19, Williams Wilkins, Baltimore.Google Scholar
  30. Hammel, H.T. and Scholander, P.F. (1976). Osmosis and Tensile Solvent. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  31. Hargens, A.R. (Ed.) (1981). Tissue Fluid Pressure and Composition, p. 3, Williams and Wilkins, Baltimore.Google Scholar
  32. Hulett, G.A. (1902). Beziehung zwischen negativm Druck und osmotischen Druck. Z. Phys. Chem. 42: 353–368.Google Scholar
  33. Intaglietta, M. and Johnson, P.C. (1978). Principles of capillary exchange. In Peripheral Circulation ( P.C. Johnson, ed.), Wiley, New York.Google Scholar
  34. Johnson, J.A. and Wilson, T.A. (1966). A model for capillary exchange. Amer. J. Physiol. 210: 1299–1303.Google Scholar
  35. Kedem, O. and Katchalsky, A. (1958). Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. et Biophys. Acta. 27: 229–246.CrossRefGoogle Scholar
  36. Krogh, A. (1919). The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52: 409–415.Google Scholar
  37. Landis, E.M. (1927). Micro-injection studies of capillary permeability. II. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Amer. J. Physiol. 82: 217–238.Google Scholar
  38. Landis, E.M. and Pappenheimer, J.R. (1963). Exchange of substances through the capillary walls. In Handbook of Physiology, Sec. 2: Circulation, Vol. 2, Ch. 29, American Physiological Society, Washington, D.C.Google Scholar
  39. Leak, L.V. and Burke, J.F. (1968). Ultrastructural studies on the lymphatic anchoring filaments. J. Cell Biol. 36: 129–149.CrossRefGoogle Scholar
  40. Lee, J.S., Smaje, L.H., and Zweifach, B.W. (1971). Fluid movement in occluded single capillaries of rabbit omentum. Circ. Res. 28: 353–370.CrossRefGoogle Scholar
  41. Meier, P. and Zieler, K.L. (1954). On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6: 731–744.Google Scholar
  42. Michel, C.C. (1978). The measurement of permeability in single capillaries. Arch. Int. Physiol. Biochim. 86: 657–667.ADSCrossRefGoogle Scholar
  43. Michel, C.C. (1980). Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J. Physiol. (London) 309: 341–355.Google Scholar
  44. Middleman, S. (1972). Transport Phenomena in the Cardiovascular System. Wiley-Interscience, New York.Google Scholar
  45. Niimi, H. and Sugihara, M. (1984). Hemorrheological approach to oxygen transport between blood and tissue. Biorheology 21: 1–17.Google Scholar
  46. Noyes, A. (1900). Die genaue Beziehung zwischen osmotischem Druck und Dampfdruck. Z. Phys. Chem. 35: 707–721.Google Scholar
  47. Ogston, A.G., Preston, B.N., and Wells, J.D. (1973). On the transport of compact particles through solutions of chain-polymers. Proc. Roy. Soc. (London) 333: 297–316.ADSCrossRefGoogle Scholar
  48. Papenfuss, H.D. and Gross, J.F. (1978). Analytical study of the influence of capillary pressure drop and permeability on glomerular ultrafiltration. Microvasc. Res. 16: 59–72.CrossRefGoogle Scholar
  49. Pappenheimer, J.R. (1953). Passage of molecules through capillary walls. Physiol. Rev. 33: 337–423.Google Scholar
  50. Pappenheimer, J.R. (1970). Osmotic reflection coefficients in capillary membranes. In: Capillary Permeability, ( C. Crone and N-A. Lassen, eds.), Munksgaard, Copenhagen, pp. 278–286.Google Scholar
  51. Pappenheimer, J.R. and Soto-Rivera, A. (1948). Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hind-limbs of cats and dogs. Amer. J. Physiol. 152: 471–491.Google Scholar
  52. Pappenheimer, J.R., Renkin, E.M., and Borrero, L.M. (1951). Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Amer. J. Physiol. 167: 13–46.Google Scholar
  53. Poynting, J.H. (1981). Change of state: solid-liquid. Phil. Mag. 5: 32–48.Google Scholar
  54. Reneau, D.D., Jr., Bruley, D.F., and Knisely, M.H. (1967). A mathematical simulation of oxygen release, diffusion and consumption in the capillaries and tissue of the human brain. In Chemical Engineering in Medicine and Biology, ( D. Hershey, ed.), Plenum Press, New York, pp. 135–241.Google Scholar
  55. Reneau, D.D., Jr., Bruley, D.F., and Knisely, M.H. (1969). A digital simulation of transient oxygen transport in capillary-tissue systems (cerebral gray matter) Amer. Inst. Chem. Eng. J. 15: 916–925.CrossRefGoogle Scholar
  56. Renkin, E.M. (1959). Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Amer. J. Physiol. 197: 1205–1210.Google Scholar
  57. Renkin, E.M. (1977). Multiple pathways of capillary permeability. Circ. Res. 41: 735–743.CrossRefGoogle Scholar
  58. Renkin, E.M. and Zaun, B.D. (1955). Effects of adrenal hormones on capillary permeability in perfused rat tissues. Amer. J. Physiol. 180: 498–502.Google Scholar
  59. Renkin, E.M. and Curry, F.E. (1982). Endothelial permeability: pathways and modulations. Proc. N.Y. Acad. Sci. 401: 248–259.ADSCrossRefGoogle Scholar
  60. Salathé, E.P. (1977). An analysis of interstitial fluid pressure in the web of the bat wing. Amer. J. Physiol. 232: H297 - H304.Google Scholar
  61. Salathé, E.P. (1980). Convection and diffusion in the extravascular space. In Mathematics of Microcirculation Phenomena ( J.F. Gross, and A. Popel, eds.), Raven Press, New York.Google Scholar
  62. Salathé, E.P. and Venkataraman, R. (1978). Role of extravascular protein in capillary-tissue fluid exchange. Amer. J. Physiol. 234: H52 - H58.Google Scholar
  63. Salathé, E.P. and An, K.N. (1976). A mathematical analysis of fluid movement across capillary walls. Microvasc. Res. 11: 1–23.CrossRefGoogle Scholar
  64. Scholander, P.F., Hammel, H.T., Bradstreet, E.D., and Hemmingsen, A.E. (1965). Sap pressure in vascular plants. Science 148: 339–346.ADSCrossRefGoogle Scholar
  65. Scholander, P.F., Hargens, A.R., and Miller, S.L. (1968). Negative pressure in the interstitial fluid of animals. Science 161: 321–328.ADSCrossRefGoogle Scholar
  66. Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., and Bradstreet, E.D. (1964). Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc. Natl. Acad. Sci. 52: 119–125.ADSCrossRefGoogle Scholar
  67. Shapiro, A.H., Jaffrin, M.Y. and Weinberg, S.L. (1969) Peristaltic pumping with long wave lengths at low Reynolds number. J. Fluid Mech. 37, 799.ADSCrossRefGoogle Scholar
  68. Skalak, T.C., Schmid-Schoenbein, G.W., and Zweifach, G.W. (1984). New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 28: 95–112.CrossRefGoogle Scholar
  69. Starling, E.H. (1896). On the absorption of fluids from the connective tissue spaces. J. Physiol. (London) 19: 312–326.Google Scholar
  70. Staub, N.C. (ed.) (1978). Lung Water and Solute Exchange, Marcel Dekker, New York. Staverman, A.J. (1951). The theory of measurement of osmotic pressure. Red. Thay. Chim. Pays-Bas. Belg. 70: 344–352.Google Scholar
  71. Stewart, G.N. (1893–1897). Researches on the circulation time in organs and on the influences which affect it. J. Physiol. (London) 15: 1–30,15: 31–72,15: 78–89 (1893); 22: 159–173 (1897).Google Scholar
  72. Tang, H.T. and Fung, Y.C. (1975). Fluid movement in a channel with permeable walls covered by porous media. (A moel of lung alveolar sheet). J. Appl. Mech. Trans. ASME Vol. 97, Ser. E 42 (1): 45–50.CrossRefGoogle Scholar
  73. Taylor, G.I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. Ser. A, 219: 186–203.CrossRefGoogle Scholar
  74. Taylor, G.I. (1954). The dispersion of matter in turbulent flow through a pipe. Proc. Roy. Soc. Ser. A, 223: 446–468.CrossRefGoogle Scholar
  75. Thomson, W. (1871). On the equilibrium of vapour at a curved surface of liquid. Phil. Mag. (A) 42: 448–452.Google Scholar
  76. Van’t Hoff, J.H. (1886a). Une propriete general de la matiere diluee. Svenska Vet. Akad. Handl. 21: 17–43.Google Scholar
  77. White, A., Handler, P., Smith, E., and Stetten, D., Jr. (1959). Principles of Biochemistry, Chapt. 12, 2nd ed., McGraw-Hill, New York.Google Scholar
  78. Wiederhielm, C.A. (1968). Dynamics of transcapillary fluid exchange. J. Gen. Physiol. 52: 295–615.CrossRefGoogle Scholar
  79. Wiederhielm, C.A. (1969). The interstitial space and lymphatic pressures in the bat wing. In The Pulmonary Circulation and the Interstitial Space. ( A.P. Fishman and H.H. Hecht, eds.), pp. 29–41. University of Chicago Press, Chicago.Google Scholar
  80. Wiederhielm, C.A. (1972). The interstitial space. In Biomechanics: Its Foundations and Objectives. ( Y.C. Fung, N. Perrone and M. Anliker, eds.) Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  81. Wiederhielm, C.A. (1979). Dynamics of capillary fluid exchange: a nonlinear computer simulation. Microvas. Res. 18: 48–82.CrossRefGoogle Scholar
  82. Wiederhielm, C.A. (1981). The tissue pressure controversy, a semantic dilemma. In Tissue Pressure and Composition (A. Hargens, ed.), Williams Wilkins, Baltimore, pp. 21–33.Google Scholar
  83. Yin, F.C.P. and Fung, Y.C. (1971a). Comparison of theory and experiment in peristaltic transport. J. Fluid Mech. 47: 93–112.ADSCrossRefGoogle Scholar
  84. Yin, F.C.P. and Fung, Y.C. (1971b). Mechanical properties of isolated mammalian ureteral segments. Am. J. Physiol. 221: 1484–1493.Google Scholar
  85. Zierler, K.L. (1963). Theory of use of indicators to measure blood flow and extracellular volume and calculations of transcapillary movement of tracers. Circ. Res. 12: 464–471.CrossRefGoogle Scholar
  86. Zupkas, P.F. and Fung, C.Y. (1985). Active contractions of ureteral segments. J. Biomech. Eng. 107: 62–67.CrossRefGoogle Scholar
  87. Zweifach, B.W. and Intaglietta, M. (1968). Mechanics of fluid movement across single capillaries in the rabbit. Microvasc. Res. 1: 83–101.CrossRefGoogle Scholar
  88. Zweifach, B.W. and Prather, J.W. (1975). Micromanipulation of pressure in terminal lymphatics in the mesentery. Amer. J. Physiol. 228: 1326–1335.Google Scholar
  89. Zweifach, B.W. and Silberberg, A. (1979). The interstitial-lymphatic flow system. In International Review of Physiology, Cardiovascular Physiology III, Vol. 18. (A.C. Guyton and D.B. Young, eds.) University Park Press, Baltimore.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.Department of Applied Mechanics and Engineering Science/BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations