Advertisement

Biomechanics pp 196-225 | Cite as

Micro- and Macrocirculation

  • Y. C. Fung

Abstract

In physiology, capillary blood flow is identified with microcirculation. Flow in small blood vessels supplying and draining the capillaries, the arterioles and venules, respectively, are also included in microcirculation, but the question of how many orders are to be included in microcirculation is sometimes debated, because different organs seem to demand different answers. From fluid mechanical point of view, the distinction between micro and macro circulation can be based on the Reynolds number, VD/v, and Womersley number, \(\left( {D/2} \right)\sqrt {\omega /\nu } \) (Sec. 5.16), where V represents the mean velocity of flow in the vessel, D is the vessel diameter, v is the kinematic viscosity of the blood, co is the circular frequency of oscillation of the blood velocity fluctuations. If the Reynolds number and Womersley numbers are both much smaller than 1, then the inertial force can be ignored, and the flow is said to be microcirculation. If both numbers are much greater than 1, then the fluid viscosity can be ignored, and the flow is said to be macrocirculation. In between these limits the fluid mechanical equations are harder to solve, and it is immaterial whether you classify them as micro or macro circulation.

Keywords

Pulmonary Vein Pulmonary Blood Flow Alveolar Septum Womersley Number Alveolar Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banister, J and Torrance, R.W. (1960). The effect of the tracheal pressure upon flow: Pressure relations in the vascular bed of isolated lungs. Quart. J. Exp. Physiol. 45: 352–367.Google Scholar
  2. Bergel, D.H. and Milnor, W.R. (1965). Pulmonary vascular impedance in the dog. Circ. Res. 16: 401–415.CrossRefGoogle Scholar
  3. Branemark, P.-I. and Lindström, J. (1963). Shape of circulating blood corpuscles. Biorheology 1: 139–142.Google Scholar
  4. Evans, E. and Fung, Y.C. (1972). Improved measurements of the erythrocyte geometry. Microvasc. Res. 4: 335–347.CrossRefGoogle Scholar
  5. Evans, E.A. and Hochmuth, R.M. (1976). Membrane viscoplastic flow. Biophysical J. 16: 13–26.ADSCrossRefGoogle Scholar
  6. Evans, E.A. and Skalak, R. (1979). Mechanics and Thermodynamics of Biomembranes. Critical Reviews in Bioengineering. Vol. 3, issues 3 and 4 (in 2 Vols). CRC Press, Boca Raton, Fl.Google Scholar
  7. Fitzgerald, J.M. (1969). Mechanics of red-cell motion through very narrow capillaries. Proc. Roy. Soc. London B, 174: 193–227.Google Scholar
  8. Fung, Y.C. and Sobin S.S. (1972). Pulmonary alveolar blood flow. Circ. Res. 30: 470–490.CrossRefGoogle Scholar
  9. Fung, Y.C. (1981). Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.Google Scholar
  10. Fung, Y.C. (1984). Biodynamics: Circulation. Springer-Verlag, New York. In press.Google Scholar
  11. Fung, Y.C. (1988). A model of the alveolar ducts of lung and its validation. J. Applied Physiol. 64: 2132–2141.Google Scholar
  12. Fung, Y.C. and Sobin, S.S. (1969). Theory of sheet flow in lung alveoli. J. Applied Physiol. 26: 472–488.Google Scholar
  13. Fung, Y.C., Sobin, S.S., Tremer, H., Yen, M.R.T., and Ho, H.H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure. J. Appl. Physiol. Resp. Envir. Exercise Physiol. 54: 1538–1549.Google Scholar
  14. Fung, Y.C. and Yen, R.T. (1986). A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60: 1638–1650.Google Scholar
  15. Fung, Y.C. and Zhuang, F.Y. (1986). An analysis of the sluicing gate in pulmonary blood flow. J. Biomech. Eng. 108: 175–182.CrossRefGoogle Scholar
  16. Horsfield, K. and Gordon, W.I. (1981). Morphometry of pulmonary veins in main. Lung 159: 211–218.CrossRefGoogle Scholar
  17. Lee, J.S. (1969). Slow viscous flow in a lung alveoli model. J. Biomech. 2: 187–198.CrossRefGoogle Scholar
  18. Malpighi, M. (1661). De Pulmonibus. Letters addressed to A. Borelli. Translated by J. Young (1930), Proc. Roy Soc. Med. 23: Part 1, 1–14.Google Scholar
  19. Miller, W.S. (1947). The Lung. Thomas, Springfield, IL.Google Scholar
  20. Milnor, W.R. (172). Pulmonary hemodynamics. In: Cardiovascular Fluid Dynamics (D.H. Bergel, ed.), Vol. 2, Academic Press, New York, Ch. 18, pp. 299–340.Google Scholar
  21. Permutt, S., Bromberger-Barnea, B., and Bane, H.N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19: 239–260.Google Scholar
  22. Schmid-Schönbein, G., Fung, Y.C., and Zweifach, B.W. (1975). Vascular endothelium-leukocyte interaction: sticking shear force in venules. Circ. Res. 36: 173–184.CrossRefGoogle Scholar
  23. Skalak, R., Tozeren, A., Zarda, R.P., and Chien, S. (1973). Strain energy function of red blood cell membranes. Biophysical J. 13: 245–264.ADSCrossRefGoogle Scholar
  24. Sobin, S.S., Tremer, H.M., Fung, Y.C. (1970). Morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circ. Res. 26: 397–414.CrossRefGoogle Scholar
  25. Sobin, S.S., Fung, Y.C., Tremer, H.M., and Rosenquist, T.H. (1972). Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circ. Res. 30: 440–450.CrossRefGoogle Scholar
  26. Warrell, D.A., Evans, J.W., Clarke, R.O., Kingaby, G.P., and West, J.B. (1972). Pattern of filling in the pulmonary capillary bed. J. Appl. Physiol. 32: 346–356.Google Scholar
  27. Wiener, F., Morkin, E., Skalak, R., and Fishman, A.P. (1966). Wave propagation in the pulmonary circulation. Circ. Res. 19: 834–850.CrossRefGoogle Scholar
  28. Will, J.A., Dawson, C.A., Weir, E.K., and Buckner, C.K. (editors). (1987). The Pulmonary Circulation in Health and Disease. Academic Press, New York.Google Scholar
  29. Yen, M.R.T. and Fung, Y.C. (1973). Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol. 35: 510–517.Google Scholar
  30. Yen, M.R.T., Fung, Y.C., and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat. J. Biomech. Eng., Trans. ASME 102: 170–177.CrossRefGoogle Scholar
  31. Yen, M.R.T. and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat. J. Biomech. Eng., Trans. ASME 103: 38–42.Google Scholar
  32. Yen, M.R.T., Zhuang, F.Y., Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1983a). Morphometry of the cat’s pulmonary venous tree. J. Appl. Physiol. Resp. Envir. Exercise Physiol. 55: 236–242.Google Scholar
  33. Yen, M.R.T., Zhuang, F.Y., Fung, Y.C., Ho, H.H., and Sobin, S.S. (1983b). Morphometry of the cat’s pulmonary arteries. J. Biomech. Eng. In press.Google Scholar
  34. Yen, M.R.T., Fung, Y.C., Zhuang, F.Y., and Zeng, Y.J. (1984). Comparison of theory and experiments of blood flow in cat’s lung. In: Biomechanics in China, Japan, and USA (Y.C. Fung, E. Fukada, and J.J. Wang, eds.), Science Press, Beijing, China. pp. 240–253.Google Scholar
  35. Yen, M.R.T. and Sobin, S.S. (1986). Pulmonary blood flow in the cat: correlation between theory and experiment. In: Frontiers in Biomechanics ( G.W. Schmid-Schönbein, S.L.-Y. Woo and B.W. Zweifach, eds.), Springer-Verlag, New York. pp. 365–376.CrossRefGoogle Scholar
  36. Zarda, P.R., Chein, S., and Skalak, R. (1977) Interaction of a viscous incompressible fluid with an elastic body. In “Computational Methods for Fluid-Structure Interaction Problems” ( Belytschko, T. and Geers, T.L., eds.) New York: American Society of Mechanical Engineers, pp. 65–82.Google Scholar
  37. Zhuang, F.Y., Fung, Y.C., and Yen, M.R.T. (1983). Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J. Appl. Physiol. Respir. Envir. Exercise Physiol. 55 (4): 1341–1348.Google Scholar
  38. Zhuang, F.Y., Yen, M.R.T., Fung, Y.C., and Sobin, S.S. (1985). How many pulmonary alveoli are supplied by a single arteriole and drained by a single venule. Microvasc. Res. 29: 18–31.CrossRefGoogle Scholar
  39. Zweifach, B.W. (1974). Quantitative studies of microcirculatory structure and function. I. Circ. Res. 34: 843–857, II. Cir. Res. 34: 858–868.CrossRefGoogle Scholar
  40. Zweifach, B.W. and Lipowsky, H.H. (1977). Quantitative studies of microcirculatory structure and function. III. Circ. Res. 41: 380–390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.Department of Applied Mechanics and Engineering Science/BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations