Skip to main content

Micro- and Macrocirculation

  • Chapter
Biomechanics

Abstract

In physiology, capillary blood flow is identified with microcirculation. Flow in small blood vessels supplying and draining the capillaries, the arterioles and venules, respectively, are also included in microcirculation, but the question of how many orders are to be included in microcirculation is sometimes debated, because different organs seem to demand different answers. From fluid mechanical point of view, the distinction between micro and macro circulation can be based on the Reynolds number, VD/v, and Womersley number, \(\left( {D/2} \right)\sqrt {\omega /\nu } \) (Sec. 5.16), where V represents the mean velocity of flow in the vessel, D is the vessel diameter, v is the kinematic viscosity of the blood, co is the circular frequency of oscillation of the blood velocity fluctuations. If the Reynolds number and Womersley numbers are both much smaller than 1, then the inertial force can be ignored, and the flow is said to be microcirculation. If both numbers are much greater than 1, then the fluid viscosity can be ignored, and the flow is said to be macrocirculation. In between these limits the fluid mechanical equations are harder to solve, and it is immaterial whether you classify them as micro or macro circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banister, J and Torrance, R.W. (1960). The effect of the tracheal pressure upon flow: Pressure relations in the vascular bed of isolated lungs. Quart. J. Exp. Physiol. 45: 352–367.

    Google Scholar 

  • Bergel, D.H. and Milnor, W.R. (1965). Pulmonary vascular impedance in the dog. Circ. Res. 16: 401–415.

    Article  Google Scholar 

  • Branemark, P.-I. and Lindström, J. (1963). Shape of circulating blood corpuscles. Biorheology 1: 139–142.

    Google Scholar 

  • Evans, E. and Fung, Y.C. (1972). Improved measurements of the erythrocyte geometry. Microvasc. Res. 4: 335–347.

    Article  Google Scholar 

  • Evans, E.A. and Hochmuth, R.M. (1976). Membrane viscoplastic flow. Biophysical J. 16: 13–26.

    Article  ADS  Google Scholar 

  • Evans, E.A. and Skalak, R. (1979). Mechanics and Thermodynamics of Biomembranes. Critical Reviews in Bioengineering. Vol. 3, issues 3 and 4 (in 2 Vols). CRC Press, Boca Raton, Fl.

    Google Scholar 

  • Fitzgerald, J.M. (1969). Mechanics of red-cell motion through very narrow capillaries. Proc. Roy. Soc. London B, 174: 193–227.

    Google Scholar 

  • Fung, Y.C. and Sobin S.S. (1972). Pulmonary alveolar blood flow. Circ. Res. 30: 470–490.

    Article  Google Scholar 

  • Fung, Y.C. (1981). Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C. (1984). Biodynamics: Circulation. Springer-Verlag, New York. In press.

    Google Scholar 

  • Fung, Y.C. (1988). A model of the alveolar ducts of lung and its validation. J. Applied Physiol. 64: 2132–2141.

    Google Scholar 

  • Fung, Y.C. and Sobin, S.S. (1969). Theory of sheet flow in lung alveoli. J. Applied Physiol. 26: 472–488.

    Google Scholar 

  • Fung, Y.C., Sobin, S.S., Tremer, H., Yen, M.R.T., and Ho, H.H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure. J. Appl. Physiol. Resp. Envir. Exercise Physiol. 54: 1538–1549.

    Google Scholar 

  • Fung, Y.C. and Yen, R.T. (1986). A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60: 1638–1650.

    Google Scholar 

  • Fung, Y.C. and Zhuang, F.Y. (1986). An analysis of the sluicing gate in pulmonary blood flow. J. Biomech. Eng. 108: 175–182.

    Article  Google Scholar 

  • Horsfield, K. and Gordon, W.I. (1981). Morphometry of pulmonary veins in main. Lung 159: 211–218.

    Article  Google Scholar 

  • Lee, J.S. (1969). Slow viscous flow in a lung alveoli model. J. Biomech. 2: 187–198.

    Article  Google Scholar 

  • Malpighi, M. (1661). De Pulmonibus. Letters addressed to A. Borelli. Translated by J. Young (1930), Proc. Roy Soc. Med. 23: Part 1, 1–14.

    Google Scholar 

  • Miller, W.S. (1947). The Lung. Thomas, Springfield, IL.

    Google Scholar 

  • Milnor, W.R. (172). Pulmonary hemodynamics. In: Cardiovascular Fluid Dynamics (D.H. Bergel, ed.), Vol. 2, Academic Press, New York, Ch. 18, pp. 299–340.

    Google Scholar 

  • Permutt, S., Bromberger-Barnea, B., and Bane, H.N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19: 239–260.

    Google Scholar 

  • Schmid-Schönbein, G., Fung, Y.C., and Zweifach, B.W. (1975). Vascular endothelium-leukocyte interaction: sticking shear force in venules. Circ. Res. 36: 173–184.

    Article  Google Scholar 

  • Skalak, R., Tozeren, A., Zarda, R.P., and Chien, S. (1973). Strain energy function of red blood cell membranes. Biophysical J. 13: 245–264.

    Article  ADS  Google Scholar 

  • Sobin, S.S., Tremer, H.M., Fung, Y.C. (1970). Morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circ. Res. 26: 397–414.

    Article  Google Scholar 

  • Sobin, S.S., Fung, Y.C., Tremer, H.M., and Rosenquist, T.H. (1972). Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circ. Res. 30: 440–450.

    Article  Google Scholar 

  • Warrell, D.A., Evans, J.W., Clarke, R.O., Kingaby, G.P., and West, J.B. (1972). Pattern of filling in the pulmonary capillary bed. J. Appl. Physiol. 32: 346–356.

    Google Scholar 

  • Wiener, F., Morkin, E., Skalak, R., and Fishman, A.P. (1966). Wave propagation in the pulmonary circulation. Circ. Res. 19: 834–850.

    Article  Google Scholar 

  • Will, J.A., Dawson, C.A., Weir, E.K., and Buckner, C.K. (editors). (1987). The Pulmonary Circulation in Health and Disease. Academic Press, New York.

    Google Scholar 

  • Yen, M.R.T. and Fung, Y.C. (1973). Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol. 35: 510–517.

    Google Scholar 

  • Yen, M.R.T., Fung, Y.C., and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat. J. Biomech. Eng., Trans. ASME 102: 170–177.

    Article  Google Scholar 

  • Yen, M.R.T. and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat. J. Biomech. Eng., Trans. ASME 103: 38–42.

    Google Scholar 

  • Yen, M.R.T., Zhuang, F.Y., Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1983a). Morphometry of the cat’s pulmonary venous tree. J. Appl. Physiol. Resp. Envir. Exercise Physiol. 55: 236–242.

    Google Scholar 

  • Yen, M.R.T., Zhuang, F.Y., Fung, Y.C., Ho, H.H., and Sobin, S.S. (1983b). Morphometry of the cat’s pulmonary arteries. J. Biomech. Eng. In press.

    Google Scholar 

  • Yen, M.R.T., Fung, Y.C., Zhuang, F.Y., and Zeng, Y.J. (1984). Comparison of theory and experiments of blood flow in cat’s lung. In: Biomechanics in China, Japan, and USA (Y.C. Fung, E. Fukada, and J.J. Wang, eds.), Science Press, Beijing, China. pp. 240–253.

    Google Scholar 

  • Yen, M.R.T. and Sobin, S.S. (1986). Pulmonary blood flow in the cat: correlation between theory and experiment. In: Frontiers in Biomechanics ( G.W. Schmid-Schönbein, S.L.-Y. Woo and B.W. Zweifach, eds.), Springer-Verlag, New York. pp. 365–376.

    Chapter  Google Scholar 

  • Zarda, P.R., Chein, S., and Skalak, R. (1977) Interaction of a viscous incompressible fluid with an elastic body. In “Computational Methods for Fluid-Structure Interaction Problems” ( Belytschko, T. and Geers, T.L., eds.) New York: American Society of Mechanical Engineers, pp. 65–82.

    Google Scholar 

  • Zhuang, F.Y., Fung, Y.C., and Yen, M.R.T. (1983). Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J. Appl. Physiol. Respir. Envir. Exercise Physiol. 55 (4): 1341–1348.

    Google Scholar 

  • Zhuang, F.Y., Yen, M.R.T., Fung, Y.C., and Sobin, S.S. (1985). How many pulmonary alveoli are supplied by a single arteriole and drained by a single venule. Microvasc. Res. 29: 18–31.

    Article  Google Scholar 

  • Zweifach, B.W. (1974). Quantitative studies of microcirculatory structure and function. I. Circ. Res. 34: 843–857, II. Cir. Res. 34: 858–868.

    Article  Google Scholar 

  • Zweifach, B.W. and Lipowsky, H.H. (1977). Quantitative studies of microcirculatory structure and function. III. Circ. Res. 41: 380–390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1990). Micro- and Macrocirculation. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6856-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6856-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5913-6

  • Online ISBN: 978-1-4419-6856-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics