Advertisement

Longwave Region: Mid to Thermal Infrared, Microwave, and Radio

  • Pamela Elizabeth Clark
  • Michael Lee Rilee
Chapter

Abstract

Measurements from the Longwave Region provide information on the macroscopic nature of surfaces and subsurfaces, ranging from abundances of rock-forming minerals within rock and soil components, to size particle distributions of regolith and rocks, to surface roughness and topography for solid surfaces. The energy production mechanisms vary widely across this region. The higher energy end is essentially an extension of the near infrared region, in terms of identification of bands characteristic of minerals or mineral functional groups (e.g., carbonates, sulfates) associated with solid surfaces. Emissions in the thermal and microwave regions can help to characterize the temperature and character of surfaces, solid or liquid, and the atmosphere.

Keywords

Remote Sensing Brightness Temperature Passive Microwave Radar Beam Slant Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Application Explorer Missions Spacecraft Design Team, Application Explorer Missions Planners Handbook, NASA TMX-69906, NASA/GSFC, 1974. Google Scholar
  2. Anderson, J.D., R.F. Jurgens, E.. Lau, M.A. Slade, Shape and Orientation of Mercury from Radar Ranging Data, Icarus, 124, 2, 690-697, 1996. Google Scholar
  3. Boynton W., G. Taylor, L. Evans, R. Reedy, R. Starr, D. James, K. Kerry, D. Drake, K. Kim, R. Williams, M. Crombie, J. Dolm, V. Baker, A. Metzger, S. Karunatillake, J. Keller, H. Newsom, J. Arnold, J. Bruckner, P. Englert, O. Gasnault, A. Sprague, I. Mitrofanov, S. Squyres, J. Trombka, L. D’Uston, H. Wanke, D. Hamara, Concentration of H, Si, Cl, K, Fe and Th in the low and mid latitude regions of Mars. JGR Planets, 112 (E12599):1-15.doi:101029/2007JE—2887, 2007. Google Scholar
  4. Clark, P.E., Physical Properties of the Planet Mercury, in The Physics of the Planets, S.K. Run-corn, Ed., John Wiley and Sons Ltd, London, 1988. Google Scholar
  5. Clark, P.E., M.A. Leake, R.F. Jurgens, Goldstone Radar Observations of Mercury, in Mercury, Google Scholar
  6. C. Chapman, F. Vilas, and M. Matthews, Ed., U. Arizona Press, Tucson, 1988. Clark, R.N., Planetary Reflectance Measurements in the Region of Planetary Thermal Emission, Icarus, 40, 1, 94-103, 1979. Clark, R.N. and T.L. Roush, Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Applications, JGR, 89, 6329-6340, 1984. Google Scholar
  7. Clark, R.N.,G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley, USGS Digital Spectral Library splib06a, U.S. Geological Survey, Data Series, http://speclab.cr.usgs.gov/spectral.lib06/ds231/ datatable.html Google Scholar
  8. Conel, J.E., Infrared Emissivities of Silicates: Experimental Results and a cloudy atmosphere model of spectral emission from condensed particulate mediums, JGR, 74, 1614-1634, 1969. Google Scholar
  9. Craib K. Synthetic Aperture SLAR systems and their application for regional resource analysis. In Shahrokhi F, Ed. Remote Sensing of Earth Resources, U Tennessee Space Institute, 1, 152178, Tullahoma, TN, Downs, G.S., P. Mouginis Mark, S.H. Zisk, T.W. Thompson, New Radar-Derived Topography for the Northern Hemisphere of Mars, JGR Planets, 87, 9747-9754, 1982, 1972. Google Scholar
  10. Elachi, C. and J. van Zyl, Introduction to the Physics and Techniques of Remote Sensing, 2nd Edition, Wiley Interscience, 2006. Google Scholar
  11. Edgerton, A.T. and D.T. Trexler, Oceanographic Applications of Remote Sensing, in Proceedings of the 6th Symposium on Remote Sensing of Environment, Ann Arbor, U. Michigan, Institute of Science and Technology, Willow Run Laboratories, 767-773, 1969. Google Scholar
  12. Estep-Barnes, P.A., Infrared spectroscopy, in Physical Methods in Determinative Mineralogy, J. Zussman, Ed., Academic Press, New York, 529-603, 1977. Ewen, D., The Horn, HI, and other Events in US Radio Astronomy, Google Scholar
  13. http://www.nrao.edu/archives/Ewen/ewen_50sand60s_slides.shtml (visited 2009), 2003. Google Scholar
  14. Farmer, V.C., The Infrared Spectra of Minerals, Mineralogical Society, London, 1974. Google Scholar
  15. Ford J., J. Cimino, B. Holt, M. RuzekShuttle Imaging Radar views the Earth from Challenger: the SIR-B Experiment. JPL Publication 86-10.Fujisada, H., F. Sakuma, A. Ono, M. Kudoh, Design and Preflight Performance of ASTER Instrument Protoflight model, IEEE Trans Geo Rem Sens, 36, 4, 1152-1160, 1998, 1986. Google Scholar
  16. Fung A, Z. Li, K. Chen Backscattering from a randomly rough dielectric surface. IEEE Trans Geoscience and Remote Sensing, 30, 356-369.Goldspiel, J.M., S.W. Squyres, M.A. Slade, Google Scholar
  17. R.F. Jurgens, S.H. Zisk, Radar-derived Topography of Low Southern Latitudes of Mars, IcaGoogle Scholar
  18. rus, 106, 2, 346-364, 1993, 1992. Google Scholar
  19. Goldstein, R.M., Radar Observations of Mercury, Astro J, 1152, 1976. Google Scholar
  20. Goody, R.M. and G.D. Robinson, Quart J. Roy. Meteorological Society, 77, 153, 1951. Google Scholar
  21. Hapke, B., Combined Theory of Reflectance and Emittance Spectroscopy, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 31-42, 1997. Google Scholar
  22. Harmon, J.K., M.A. Slade, R.A. Velez, A. Crespo, M.J. Dryer, J.M. Johnson, Radar Mapping of Mercury’s Polar Anomalies, Nature, 369, 6477, 213-215, 1994. Google Scholar
  23. Hirsch, S.N., R.F. Kruckberg, F.H. Madden, The Bispectral Forest Fire Detection System, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 227-235, 1973. Google Scholar
  24. Holter, M.R., Passive Microwave Imaging, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 246-255, 1973. Google Scholar
  25. Hook, S.J., A.R. Gabell, A.A. Green, P.S. Kealy, A Comparison of Techniques for Extracting Emissivity Information from Thermal Infrared Data for Geologic Studies, Remote Sens Env, 1992. Google Scholar
  26. Howard, J.N., Proceedings Institute of Radio Engineers, 47, 1459; 1959. Google Scholar
  27. Hunt, G.R., Electromagnetic radiation: The communication link in remote sensing, in Remote Sensing in Geology, B. Siegel and A. Gillespie, Eds., Wiley, New York, 5-46, 1980. Google Scholar
  28. Innes, R.B., An Interpreter’s Perspective on Modern Airborne Radar Imagery, in Proceedings of the 5th Symposium on Remote Sensing of Environment, Ann Arbor, U. Michigan, Institute of Science and Technology, Willow Run Laboratories, 107-122, 1969. Google Scholar
  29. Jaluria Y, K. Torrance Computational Heat Transfer, 2nd Ed., Taylor and Francis, NY, NY, 554 pp., 2003. Google Scholar
  30. JPL Magellan Homepage, http://www2.jpl.nasa.gov/magellan/ (visited 2009), 1994. Google Scholar
  31. Jurgens, R.F., Earth-based Radar Studies of Planetary surfaces and atmospheres, IEEE Trans, GE-28, 293, 1982. Google Scholar
  32. Kahle, A.B., Surface Thermal Properties, in Remote Sensing in Geology, B. Siegel and A. Gillespie, Eds., 5-45, Wiley, New York, 257-274, 1980. Google Scholar
  33. Kahle, A.B., F.D. Palluconi, P.R. Christensen, Thermal Emission Spectroscopy: Application to the Earth and Mars, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 99-120, 1997. Google Scholar
  34. Lewis, A.J., Evaluation of Multiple-Polarized Radar Imagery for the Detection of Selected Cultural Features, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 296-313, 1973. Google Scholar
  35. MacDonald, H.C., Techniques and Applications of Imaging Radars, in Remote Sensing in Geology, B. Siegel and A. Gillespie, Eds., Wiley, New York, 297-336, , 1980. Google Scholar
  36. Margot, J.L., D.B. Campbell, R.F. Jurgens, M.A. Slade, topography of the lunar poles from radar interferometry: A survey of cold trap locations, Science, 284, 5420, 1685-1660, 1999. Google Scholar
  37. Mendell W. Degradation of large, period II craters. Proc Lun Sci Conf 7, 2705-2716, 1976. Google Scholar
  38. Mendell, W.W. and F.J. Low, Infrared Orbital Mapping of Lunar Features, Proc Lun Sci Conf 6th, 2711-2719, 1975. Google Scholar
  39. McNish, L., The Atmosphere, Astronomy, and Green Lasers, Royal Astronomical Society of Canada, http://calgary.rasc.ca/atmosphere.htm, (visited 2009), 2007. Google Scholar
  40. Morris R., J. Gooding, H. Lauer, R. Singer Origin of Mars-like spectral and magnetic properties of a Hawaiian palagonitic soil. JGR, 95, 14427-14434, 1990. Google Scholar
  41. Nasr, A., Spectral responsivity of the quantum wire infrared photodetectors, Optics and Laser Technology, 41, 3, 345-350, 2009. Google Scholar
  42. NSSDC, Pioneer Venus Project Information, http://nssdc.gsfc.nasa.gov/ planetary/pioneer_venus.html (visited 2009), 2005. Google Scholar
  43. Nunnally, N.R., Integrated Landscape Analysis with Radar Imagery, Remote Sensing of Environment, 1, 1-6, 1969. Google Scholar
  44. Ostro, S.J., J.D. Giorgini, L. Benner, Radar reconnaissance of Near-Earth Asteroids, Near Earth Objects, Celestial Neighbors, Opportunity an Risk, Proc IAU Symp 256, http://journals.cambridge.org/download.php?file =%2FIAU%2FIAU2_S236%2FS1743921307003183a.pdf&code=2484e3d80b288deb799cf8 f415584175, (visited 2009), 2007. Google Scholar
  45. Pettengill, G.H. and T.W. Thompson, A Radar Study of the Lunar Crater Tycho at 3.8-cm and 70-cm Wavelengths, Icarus, 8, 457-471, 1968. Google Scholar
  46. Pettengill, G.H., S.H. Zisk, T.W. Thompson, The Mapping of Lunar Radar Scattering Characteristics, The Moon, 10, 3-16, 1974. Google Scholar
  47. Roush, T.L., D.L. Blaney, R.B. Singer, The Surface Composition of Mars as Inferred from Spectroscopic Observations, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 367394, 1997. Google Scholar
  48. Ruff, S.W., Thermal Emission Spectrometer: The Instrument, MGS TES Homepage, http://tes.asu.edu/about/instrument/description/index.html (visited 2009), 2009. Google Scholar
  49. Saari, J.M. and R.W. Shorthill, The Sunlit Lunar Surface, The Moon, 5, 161-178, 1972. Google Scholar
  50. Sabins, F., “Infrared imagery and geologic aspects, Photogrammetric Engineering, 29, 83-87. Google Scholar
  51. Sabins, F., Remote Sensing: Principles and Interpretation, 2nd Edition, Freeman, San Francisco, 432 p., 1996. Google Scholar
  52. Sabins, F., Interpretation of Infrared Images, in Remote Sensing in Geology, B. Siegel and A. Gillespie, Eds., 5-45, Wiley, New York, 257-274, 275-296, 1980. Google Scholar
  53. Fujisada, H., F. Sakuma, A. Ono, and M. Kudoh, Design and Preflight Performance of ASTER Instrument Protoflight Model, IEE Trans Geoscience Remote Sensing, 36, 4, 1152-1160, 1998. Google Scholar
  54. Salisbury, J.W., Mid-Infrared Spectroscopy: Laboratory Data, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 79-98, 1993. Google Scholar
  55. Salisbury, J., R. Vincent, L. Logan, G. Hunt Infrared emissivity of lunar surface features 2. Interpretation JGR, 75, 2671-2682, 1970. Google Scholar
  56. Salisbury, J.W., L. Walter, and D. D’Aria, Mid Infrared (2.5 to 13.5 um) Spectra of Igneous Rock. USGS Open File Report 88-686, Reston, VA, 132 pp., 1988. Google Scholar
  57. Salisbury, J.W. and G.R. Hunt, Meteorite spectra and weathering, JGR, 79, 4439-4441, 1974. Google Scholar
  58. Salisbury, J.W. and A. Wald, The role of Volume Scattering in Reducing Spectral Contrast of Reststrahlen Bands in Spectra of Powdered Minerals, Icarus, 96, 121-128, 1992. Google Scholar
  59. Salisbury, J.W. and Walter, L.S., Thermal Infrared (2.5 to 13.5 micron) directional hemispherical reflectance of leaves, Photogramm Eng Remote sensing, 54, 1301-1304, 1989. Google Scholar
  60. Salisbury, J.W., L.S. Walter, N.Vergo, D.M. D’Aria, Mid-Infrared (2.1 to 25 micron) Spectra of Minerals. Johns Hopkins U Press, 1992. Google Scholar
  61. Sattinger, I.J. and F. Polcyn, Peaceful uses of Earth-Observations Spacecraft Volume III: Sensor Requirements and Experiments, U Michigan, Willow Run Laboratories, NASA Contractor Report 7219-1-F, 1966. Google Scholar
  62. Schmugge, T., Techniques and Applications of Microwave Radiometry, in Remote Sensing in Geology, B. Siegel and A. Gillespie, Eds., Wiley, New York, 337-362, 1980. Shapiro, I.I., S.H. Zisk, A.E. Rogers, M.A. Slade, T.W. Thompson, Lunar Topography: Global Determination by Radar, Science, 178, 939-948, 1972. Google Scholar
  63. Short, N., The remote sensing tutorial (rst), http://rst.gsfc.nasa.gov/, 2007. Google Scholar
  64. Silverman, S.H., K. Blasius, S. Ferry, P. ChristensenThermal Emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array. Aerospace Conference Proc, 3, 377-389, 1999.Google Scholar
  65. Simpson, R.A., G.L. Tyler, Radar Scattering Laws for the Lunar Surface, IEE Trans Antennas and Propagation, AP-30, 3, 439-449, 1982.Google Scholar
  66. Slade M, B. Butler, D. Muhleman Mercury radar imaging -Evidence for polar ice. Science, 258, 5082, 635-640, 1992. Google Scholar
  67. Sprague, A.L. Mid-Infrared (7.5-13.5 microns) Spectroscopy of Asteroids: the Potential for Mineralogical Determination, Astronomical Infrared Spectroscopy Future Directions, ASP Conference, 41, 1993. Google Scholar
  68. Sprague, A.L., D. Nash, F. Witteborn, D.P. Cruikshank, Mercury’s feldspar connection mid-IR measurements suggest plagioclase, Adv Space Res, 19, 10, 1507-1510, 1997. Google Scholar
  69. Staelin, D.H., Passive microwave remote sensing. Proceedings of IEEE, 57, 427, 1969. Google Scholar
  70. Staelin, D.H., Passive Remote Sensing at Microwave Wavelengths, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 256-267, 1973.Google Scholar
  71. Tackle, E.S. and D. Herzmann, http://www.geology.iastate.edu/gccourse/ chem/evol/images/image6.gif, 1995. Google Scholar
  72. Taylor, J.I. and R.W. Stingelin, Infrared Imaging for Water Resources Studies, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 220-226, 1973.Google Scholar
  73. Thompson, T.W., High Resolution Lunar Radar Map at 7.5 Meter Wavelength, Icarus, 36, 174Google Scholar
  74. 188, 1978.Google Scholar
  75. Thompson, T.W., Earth-based Radar Mapping of the Moon, The Moon and Planets, 20, 179-198, 1979.Google Scholar
  76. Thompson, T.W., High Resolution Lunar Radar Map at 70-cm Wavelength, Earth Moon Planets, 37, 59-70, 1987.Google Scholar
  77. Thompson, T.W., H. Masursky, R.W. Shorthill, G.L. Tyler, S.H. Zisk, A Comparison of Infrared, Radar, and Geologic Mapping of Lunar Craters, The Moon, 10, 87-117, 1974.Google Scholar
  78. Toon, O.B., J.B. Pollack, C. Sagan, Physical Properties of the Particles Comprising the Martian Dust Storm 1971-1972, Icarus, 3, 63-696. Google Scholar
  79. Toulmin P, A. Baird, B. Clark, K. Keil, H. Rose, R. Christian, P. Evans, W. Kelliher Geochemical and mineralogical interpretation of the Viking inorganic chemical results. JGR, 82, 46254643, 1977. Google Scholar
  80. Tyler A, Kozlowski R, Lebofsky L Determination of rock type on Mercury and the Moon through remote sensing in the thermal infrared. GRL, 15, 808-811, 1988. Google Scholar
  81. Vickers, R.S. and R.J. Lyon, Infrared Sensing from Spacecraft: A Geologic Interpretation, in Thermophysics of Spacecraft and Planetary Bodies, G.B. Heller Ed., New York, Academic Press, 585-607, 1967. Google Scholar
  82. Viskne, A., T.C. Liston, C.D. Sapp, SLR Reconnaissance of Panama, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 290-295, 1973. Google Scholar
  83. Walter, L.S. and J.W. Salisbury, Special Characterization of Igneous Rocks in the 8 to 13 micron Region, JGR, 94, 9203-9213, 1989. Google Scholar
  84. Watson, K., F.A. Kruse, S. Hummer-Miller, Thermal Infrared Exploration in the Carlin Trend, Northern Nevada, Geophysics, 55, 70-79, 1989. Google Scholar
  85. Zisk, S.H., Lunar Topography: First Radar Interferometer Measurements of the AlphonsusPtolemaeus-Arzachel Region, 178, 977-980, 1972. Google Scholar
  86. Zisk, S.H., C.A. Hodges, H.J. Moore, R.W. Shorthill, T.W. Thompson, E.A. Whitaker, D.E. Wilhelms, The Aristarchus Harbinger Region of the Moon: Surface Geology and History from Recent Remote Sensing Observations, The Moon, 17, 59-99, 1977. Google Scholar
  87. Zisk, S.H., P. Mouginis Mark, Anomalous Region on Mars – Implications for Near-Surface Liquid Water, Nature, 288, 5787, 126-129, 1980. Google Scholar
  88. Zisk, S.H., G.H. Pettengill, G.W.Catuna, High Resolution Radar Maps of the Lunar Surface at 3.8-cm Wavelength, The Moon, 10, 17-50, 1974. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Physics Department NASA/GSFC Code 695.0Catholic University of AmericaGreenbeltUSA
  2. 2.Rilee Systems Technologies LLCHerndonUSA

Personalised recommendations