Skip to main content

Visible and Circumvisible Regions and Image Interpretation

  • Chapter
  • First Online:
  • 2285 Accesses

Abstract

Despite the availability of other forms of remote sensing, measurements from the visible spectrum, directly connected to vision provided the original basis of remote sensing and the foundation for the interpretation of surface features. The human eye (Figure 3.1) is sensitive to only a very small portion of the electromagnetic spectrum, in wavelength terms 0.35 to 0.65 microns, not accidentally the peak of solar irradiance at the Earth’s surface (Gray and Coutts 1973). By contrast, human skin is sensitive to thermal (temperature) variations, and the human ear to sound over a relatively larger 10-octave range (Gray and Coutts 1973).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J., Visible and near infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system, JGR Planets, 79, 4829-4836, 1974.

    Google Scholar 

  • Adams, J., C. Pieters, and T. McCord, Orange glass: Evidence for regional deposits of pyroclastic origin on the Moon, Proc Fifth Lun Sci Conf Geochim et Cosmochim Acta Supplement 5, 1, 171-186.

    Google Scholar 

  • Amsbury, D.L., Geologic Comparison of Spacecraft and Aircraft Photographs of the Potrillo Mountains, New Mexico, and Franklin Mountains, Texas, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 1973.

    Google Scholar 

  • Barringer A.R., Remote Sensing Techniques for\Mineral Discovery, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 47-63, 1973.

    Google Scholar 

  • Buckingham, W.F. and S.E. Sommer, Mineralogical characteristics of rock surfaces formed by hydrothermal alteration and weathering: Application to remote sensing, Economic Geology, 78, 664-674, 1983.

    Google Scholar 

  • Burns, R., Mineralogical Applications of Crystal Field Theory, 2nd Edition, Cambridge University Press, New York, New York, 1993.

    Google Scholar 

  • Burns, R., Origin of Electronic Spectra of Minerals in the Visible to Near Infrared Region, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 3-30, 1997.

    Google Scholar 

  • Caiger, J.H., Aerial Photographic Interpretation of Road Construction Materials in Southern Africa, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 114-118, 1973.

    Google Scholar 

  • Clark, P.E. and L. McFadden, New results and implications for lunar crustal iron distribution using sensor data fusion techniques, JGR Planets, 105, E2, 4291-4316, 2000.

    Google Scholar 

  • Clark, R., USGS Spectroscopy Lab, http://speclab.cr.usgs.gov/, accessed 2009.

    Google Scholar 

  • Cloutis, E., M. Gaffey, T. Jackowski, K. Reed, Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra, JGR Planets, 91, 11641-11653, 1986.

    Google Scholar 

  • Elachi, C., and J. Van Zyl Introduction to the Physics and Techniques of Remote Sensing, 2nd Edition, John Wiley and Sons, New York, 413 p., 2006.

    Google Scholar 

  • Elson, J.A., Glacial Geology, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, 1980.

    Google Scholar 

  • Gaffey, M., L. Lebofsky, M. Nelson, T. Jones, Asteroid Surface Compositions from Earth-based Reflectance Spectroscopy, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 437454, 1997.

    Google Scholar 

  • Gaffey, S., L. McFadden, D. Nash, and C. Pieters, Ultraviolet, Visible, and Near-Infrared Reflectance Spectroscopy: Laboratory Spectra of Geologic Materials, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 43-78, 1997.

    Google Scholar 

  • Gray D.W. and J.W. Coutts, The Electromagnetic Spectrum, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 2-9, 1973.

    Google Scholar 

  • Hapke, B., Combined Theory of Reflectance and Emittance Spectroscopy, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, 31-42, 1997.

    Google Scholar 

  • Hemphill, W.H., G.E. Stoertz, D.A. Markle, Remote Sensing of Luminescent Materials, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 83-92, 1973.

    Google Scholar 

  • Hiroi, T. and C. Pieters, Estimation of grain sizes and mixing ratios of the powder mixtures of common geological materials, JGR Planets, 99, E5, 10867-10879, 1994.

    Google Scholar 

  • Gonzalez, R.. and R. Woods (2007), Digital Image Processing, Prentice Hall, 407-413, 2007.

    Google Scholar 

  • Gumerman, G.J. and J.A. Neely, An archaeological survey of the Tehuacan Valley, Mexico: A test of color infrared photography, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 193-197, 1973.

    Google Scholar 

  • Hunt, G.R., Spectral signatures of particulate minerals in the visible and near infrared, Geophysics, 42, 501-513, 1977.

    Google Scholar 

  • Hunt, G.R., Electromagnetic Radiation: The Communication Link, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, John WIley & Sons, New York, 5-46, 1980.

    Google Scholar 

  • Hunt, G.R. and R.P. Ashley, Spectra of altered rocks in the visible and near infrared, Economic Geology, 74, 1613, 1974.

    Google Scholar 

  • Kaydash and Y. Shkuratov, Fe, Ti, AND Is/FeO Maps for the Lunar Nearside: New Estimations by Optical Data, LPS XXIX, 1089.pdf, 1998.

    Google Scholar 

  • King, T. and W. Ridley, Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing applications, JGR Planets, 92, 11457-11469, 1987.

    Google Scholar 

  • Lowe, D., Acquisition of Remotely Sensed Data, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, 47-90, 1980.

    Google Scholar 

  • Lowman, P.D., Geologic Uses of Earth Orbital Photography, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 170-182, 1973.

    Google Scholar 

  • Lowman, P.D., Space Photography-A Review, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 145-152, 1973.

    Google Scholar 

  • Lowman, P.D., The Evolution of Geological Space Photography, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, 91-117, 1980.

    Google Scholar 

  • Lowman, P.D. and L. Lattman, Geomorphology, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, 485-504, 1980.

    Google Scholar 

  • Lucey, P., Model near infrared and optical constants of olivine and pyroxene, JGR Planets, 103, 1703-1713, 1998.

    Google Scholar 

  • Moratto Z., M. Broxton, R. Beyer, M. Lundy, K. Husmann Ames Stereo Pipeline NASA’S Open Source Automated Stereogrammetry Software. Lunar and Planetary Science, 2364.pdf, 2010.

    Google Scholar 

  • Morrison, Wolff, Fraknoi, Abell’s Exploration of the Universe, 7th Edition, 1995.

    Google Scholar 

  • O’Leary, D., J. Friedman, and H. Pohn. Lineament, linear, lineation:some proposed new standards for old terms. GSA Bulletin, 87, 1463-1469, 1976.

    Google Scholar 

  • Olson, C.E., What is Photographic Interpretation?, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 95-102, 1973.

    Google Scholar 

  • Parker, D.C. and M.F. Wolff, Remote Sensing, in The Surveillant Science: Remote Sensing of the Environment, Houghton Mifflin, Dallas, 29-37, 1973.

    Google Scholar 

  • Pieters, C. Strength of Mineral Absorption Features in the Transmitted Component of Near-Infrared Reflected Light: First Results from RELAB, JGR, 88, B11, 9534-9544, 1983.

    Google Scholar 

  • Pieters, C., Compositional diversity and stratigraphy of the lunar crust derived from reflectance spectroscopy, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 309-340, 1997.

    Google Scholar 

  • Raines G.L. and F.C. Canney, Vegetation and Geology, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, 365-380, 1980.

    Google Scholar 

  • Rowan, L.C. and E.H. Lathram, Mineral Exploration, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, 553-606, 1980.

    Google Scholar 

  • Singer, R., Near Infrared spectral reflectance of mineral mixtures: Systematic combination of pyroxenes, olivine, and iron oxides, JGR Planets, 86, 7967-7982, 1981.

    Google Scholar 

  • Sabins, F., Remote Sensing: Principles and Interpretation, 2nd Edition, Freeman, San Francisco, 432 p., 1996.

    Google Scholar 

  • Shkuratov, Y., V. Kaydash, N. Opanasenko, Iron and titanium abundance and maturity degree distribution on the lunar nearside, Icarus, 137, 222-234, 1999.

    Google Scholar 

  • Short, N., The remote sensing tutorial (rst), http://rst.gsfc.nasa.gov/, 2007.

    Google Scholar 

  • Skaley, J.E., Photo–optical Techniques of Image Enhancement, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, New York, 119-138, 1980.

    Google Scholar 

  • Slater, P.N., Photographic Systems for Remote Sensing, in Manual of Remote Sensing, Reeves, R., Ed., American Society of Photogrammetry, Falls Church Va, 235-323, 1975.

    Google Scholar 

  • Spurr, S.H., Types of Aerial Photographs, in The Surveillant Science: Remote Sensing of the Environment, Ed. R. Kohl, Houghton Mifflin, Dallas, 103-113, 1973.

    Google Scholar 

  • Taylor, L. A., C. M. Pieters, R. V. Morris, L. P. Keller, and D. S. McKay, Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe., Journal Geophysical Research, 106 (E11), 27,985-28,000, 2001.

    Google Scholar 

  • Vane, G., J. Duval, J.B. Wellman, Imaging Spectroscopy of the Earth and other Solar System Bodies, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Ed. C. Pieters and P. Englert, Cambridge University Press, New York, 121-144, 1997.

    Google Scholar 

  • Vilas, F., Mercury: Absence of Crystalline Fe+2 in the regolith, Icarus, 64, 133-138, 1985.

    Google Scholar 

  • Weeden, H.A. and Bolling, N.B., Fundamentals of Aerial Photography Interpretation, in Remote Sensing in Geology, Ed. B. Siegal and A. Gillespie, Wiley and Sons, New York, New York, 229-256, 1980.

    Google Scholar 

  • Wharton, W. and D. Howorth, Principles of Television Reception, Pitman Publishing, 161-163, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Elizabeth Clark Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clark, P.E., Rilee, M.L. (2010). Visible and Circumvisible Regions and Image Interpretation. In: Remote Sensing Tools for Exploration. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6830-2_3

Download citation

Publish with us

Policies and ethics