Advertisement

Kinetic Theory of Ring Current and Electromagnetic Ion Cyclotron Waves: Fundamentals

  • George V. KhazanovEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 372)

Abstract

The inner magnetospheric plasma is a very unique composition of different plasma particles and waves. Among these plasma particles and waves are ring current (RC) particles and electromagnetic ion cyclotron (EMIC) waves. The RC is the source of free energy for the EMIC wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward \({\bf{E}} \times {\bf{B}}\) convection from the plasma sheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC–EMIC waves-coupling process, and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system, with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves.

Keywords

Wave Packet Plasma Sheet Ring Current EMIC Wave Fast Fourier Transform Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahn, B.-H., Richmond, A.D., Kamide, Y., Kroehl, H.W., Emery, B.A., de la Beaujardie’re, O., Akasofu, S.-I.: An ionospheric conductance model based on ground magnetic disturbance data. J. Geophys. Res. 103, 14769–14780 (1998)ADSCrossRefGoogle Scholar
  2. Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., Sitenko, A.G., Stepanov, K.N.: Plasma Electrodynamics, vols. 1 and 2. Elsevier, New York (1975)Google Scholar
  3. Albert, J.M.: Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J. Geophys. Res. 108, 1249 (2003). doi: 10.1029/2002JA009792CrossRefGoogle Scholar
  4. Amm, O.: Comment on “A three-dimensional, iterative mapping procedure for the implementation of an ionosphere–magnetosphere anisotropic Ohm’s law boundary condition in global magnetohydrodynamic simulations” by Michael L. Goodman. Ann. Geophys. 14, 773–774 (1996)Google Scholar
  5. Anderson, B.J., Fuselier, S.A.: Response of thermal ions to electromagnetic ion cyclotron waves. J. Geophys. Res. 99, 19413–19425 (1994)ADSCrossRefGoogle Scholar
  6. Anderson, B.J., Erlandson, R.E., Zanetti, L.J.: A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere. 1. Equatorial occurrence distributions. J. Geophys. Res. 97, 3075–3088 (1992a)ADSCrossRefGoogle Scholar
  7. Anderson, B.J., Erlandson, R.E., Zanetti, L.J.: A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere. 2. Wave properties. J. Geophys. Res. 97, 3089–3101 (1992b)ADSCrossRefGoogle Scholar
  8. Anderson, B.J., Denton, R.E., Fuselier, S.A.: On determining polarization characteristics of ion cyclotron wave magnetic field fluctuations. J. Geophys. Res. 101, 13195–13213 (1996)ADSCrossRefGoogle Scholar
  9. Angerami, J.J., Thomas, J.O.: Studies of planetary atmospheres. 1. The distribution of ions and electrons in the Earth’s exosphere. J. Geophys. Res. 69, 4537–4560 (1964)ADSzbMATHCrossRefGoogle Scholar
  10. Arnoldy, R.L., Engebretson, M.J., Denton, R.E., Posch, J.L., Lessard, M.R., Maynard, N.C., Ober, D.M., Farrugia, C.J., Russell, C.T., Scudder, J.D., Torbert, R.B., Chen, S.-H., Moore, T.E.: Pc 1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse. J. Geophys. Res. 110, A07229 (2005). doi: 10.1029/2005JA011041ADSCrossRefGoogle Scholar
  11. Arthur, C.W., McPherron, R.L., Means, J.D.: A comparative study of three techniques for using spectral matrix in wave analysis. Radio Sci. 11, 833–845 (1976)ADSCrossRefGoogle Scholar
  12. Bame, S.J., McComas, D.J., Thomsen, M.F., Barraclough, B.L., Elphic, R.C., Glore, J.P.: Magnetospheric plasma analyzer for spacecraft with constrained resources. Rev. Sci. Instrum. 64, 1026–1033 (1993)ADSCrossRefGoogle Scholar
  13. Belian, R.D., Gisler, G.R., Cayton, T., Christensen, R.: High-Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989. J. Geophys. Res. 97, 16897–16906 (1992)ADSCrossRefGoogle Scholar
  14. Bespalov, P.A., Trakhtengerts, V.Y.: Cyclotron instability of the Earth radiation belts. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 10, pp. 155–192. Springer, New York (1986)Google Scholar
  15. Bezrukikh, V.V., Gringauz, K.I.: The hot zone in the outer plasmasphere of the Earth. J. Atmos. Terr. Phys. 38, 1085–1091 (1976)ADSCrossRefGoogle Scholar
  16. Brace, L.H., Chappell, C.R., Chandler, M.O., Comfort, R.H., Horwitz, J.L., Hoegy, W.R.: F-region electron temperature signatures of the plasmapause based on Dynamics Explorer 1 and 2 measurements. J. Geophys. Res. 93, 1896–1908 (1988)ADSCrossRefGoogle Scholar
  17. Bräysy, T., Mursula, K., Marklund, G.: Ion cyclotron waves during a great magnetic storm observed by Freja double-probe electric field instrument. J. Geophys. Res. 103, 4145–4155 (1998)ADSCrossRefGoogle Scholar
  18. Büchner, J., Lehmann, H.-R., Rendtel, J.: Properties of the subauroral electron temperature peak observed by Langmuir-probe measurements on board Intercosmos-18. Gerlands Beitr. Geophys. 92, 368–372 (1983)ADSGoogle Scholar
  19. Burke, W.J., Fehringer, T.L., Weimer, D.R., Huang, C.Y., Gussenhoven, M.S., Rich, F.J., Gentile, L.C.: Observed and predicted potential distributions during the October 1995 magnetic cloud passage. Geophys. Res. Lett. 25, 3023–3026 (1998)ADSCrossRefGoogle Scholar
  20. Burtis, W.J.: User’s guide to the Stanford VLF raytracing program. Report. Space, Telecommunications, and Radioscience. Laboratory of Stanford University, Stanford, CA(1973)Google Scholar
  21. Chamberlain, J.W.: Planetary corona and atmospheric evaporation. Planet. Space Sci. 11, 901–960 (1963)ADSCrossRefGoogle Scholar
  22. Cornwall, J.M.: Cyclotron instabilities and electromagnetic emission in the ultra low frequency and very low frequency ranges. J. Geophys. Res. 70, 61–69 (1965)ADSCrossRefGoogle Scholar
  23. Cornwall, J.M., Coroniti, F.V., Thorne, R.M.: Turbulent loss of ring current protons. J. Geophys. Res. 75, 4699–4709 (1970)ADSCrossRefGoogle Scholar
  24. Cornwall, J.M., Coroniti, F.V., Thorne, R.M.: Unified theory of SAR-arc formation at the plasmapause. J. Geophys. Res. 76, 4428–4445 (1971)ADSCrossRefGoogle Scholar
  25. Daglis, I.A.: The role of magnetosphere–ionosphere coupling in magnetic storm dynamics. In: Tsurutani, B.T., Gonzalez, W.D., Kamide, E.Y., Arballo, J.K. (eds.) Magnetic Storms. Geophys. Monogr. Ser., vol. 98, pp. 107–116. AGU, Washington, DC (1997)Google Scholar
  26. Demekhov, A.G.: Recent progress in understanding Pc 1 pearl formation. J. Atmos. Solar-Terr. Phys. 69, 1609 (2007). doi: 10.1016/j.jastp.2007.01.014ADSCrossRefGoogle Scholar
  27. Denton, R.E., Anderson, B.J., Ho, G., Hamilton, D.C.: Effects of wave superposition on the polarization of electromagnetic ion cyclotron waves. J. Geophys. Res. 101, 24869–24885 (1996)ADSCrossRefGoogle Scholar
  28. Engebretson, M.J., Peterson, W.K., Posch, J.L., Klatt, M.R., Anderson, B.J., Russell, C.T., Singer, H.J., Arnoldy, R.L., Fukunishi, H.: Observations of two types of Pc 1–2 pulsations in the outer dayside magnetosphere. J. Geophys. Res. 107, 1451 (2002). doi: 10.1029/2001JA000198CrossRefGoogle Scholar
  29. Engebretson, M.J., Keiling, A., Fornacon, K.-H., Cattell, C.A., Johnson, J.R., Posch, J.L., Quick, S.R., Glassmeier, K.-H., Parks, G.K., Réme, H.: Cluster observations of Pc 1–2 waves and associated ion distributions during the October and November 2003 magnetic storms. Planet. Space Sci. 55, 829–848 (2007)ADSCrossRefGoogle Scholar
  30. Engebretson, M.J., Lessard, M.R., Bortnik, J., Green, J.C., Horne, R.B., Detrick, D.L., Weatherwax, A.T., Manninen, J., Petit, N.J., Posch, J.L., Rose, M.C.: Pc1–Pc2 waves and energetic particle precipitation during and after magnetic storms: Superposed epoch analysis and case studies. J. Geophys. Res. 113, 1211 (2008). doi: 10.1029/2007JA012362CrossRefGoogle Scholar
  31. Erlandson, R.E., Ukhorskiy, A.J.: Observations of electromagnetic ion cyclotron waves during geomagnetic storms: Wave occurrence and pitch angle scattering. J. Geophys. Res. 106, 3883–3895 (2001)ADSCrossRefGoogle Scholar
  32. Erlandson, R.E., Zanetti, L.J., Potemra, T.A., Block, L.P., Holmgren, G.: Viking magnetic and electric field observations of Pc 1 waves at high latitudes. J. Geophys. Res. 95, 5941–5955 (1990)ADSCrossRefGoogle Scholar
  33. Erlandson, R.E., Anderson, B.J., Zanetti, L.J.: Viking magnetic and electric field observations of periodic Pc 1 waves: Pearl pulsations. J. Geophys. Res. 97, 14823–14832 (1992)ADSCrossRefGoogle Scholar
  34. Erlandson, R.E., Mursula, K., Bosinger, T.: Simultaneous ground-satellite observations of structured Pc 1 pulsations. J. Geophys. Res. 101, 27149–27156 (1996)ADSCrossRefGoogle Scholar
  35. Fang, X., Liemohn, M.W., Kozyra, J.U.: Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms. 2. Conductances and beam spreading. J. Geophys. Res. 112, A05301 (2007a). doi: 10.1029/2006JA012113ADSCrossRefGoogle Scholar
  36. Fang, X., Ridley, A.J., Liemohn, M.W., Kozyra, J.U., Evans, D.S.: Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms. 3. Impact on the ionosphere and thermosphere. J. Geophys. Res. 112, A05302 (2007b). doi: 10.1029/2006JA012144ADSCrossRefGoogle Scholar
  37. Farrugia, C.J., Jordanova, V.K., Freeman, M.P., Cocheci, C.C., Arnoldy, R.L., Engebretson, M., Stauning, P., Rostoker, G., Thomsen, M.F., Reeves, G., Yumoto, K.: Large-scale geomagnetic effects of May 4, 1998. Adv. Space Res. 31, 1111–1116 (2003)ADSCrossRefGoogle Scholar
  38. Foat, J.E., Lin, R.P., Smith, D.M., Fenrich, F., Millan, R., Roth, I., Lorentzen, K.R., McCarthy, M.P., Parks, G.K., Treilhou, J.P.: First detection of a terrestrial MeV X-ray burst. Geophys. Res. Lett. 25, 4109–4112 (1998)ADSCrossRefGoogle Scholar
  39. Fok, M.-C., Wolf, R.A., Spiro, R.W., Moore, T.E.: Comprehensive computational model of the Earth’s ring current. J. Geophys. Res. 106, 8417–8424 (2001)ADSCrossRefGoogle Scholar
  40. Fraser, B.J.: Propagation of Pc 1 micropulsations in a proton–helium magnetosphere. Planet. Space Sci. 20, 1883–1893 (1972)ADSCrossRefGoogle Scholar
  41. Fraser, B.J.: Observations of ion cyclotron waves near synchronous orbit and on the ground. Space Sci. Rev. 42, 357–374 (1985)ADSCrossRefGoogle Scholar
  42. Fraser, B.J., Nguyen, T.S.: Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J. Atmos. Solar-Terr. Phys. 63, 1225–1247 (2001)ADSCrossRefGoogle Scholar
  43. Fraser, B.J., Kemp, W.J., Webster, D.J.: Ground-satellite study of a Pc 1 ion cyclotron wave event. J. Geophys. Res. 94, 11855–11863 (1989)ADSCrossRefGoogle Scholar
  44. Fraser, B.J., Samson, J.C., Hu, Y.D., McPherron, R.L., Russell, C.T.: Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2. J. Geophys. Res. 97, 3063–3074 (1992)ADSCrossRefGoogle Scholar
  45. Fraser, B.J., Singer, H.J., Hughes, W.J., Wygant, J.R., Anderson, R.R., Hu, Y.D.: CRRES Poynting vector observations of electromagnetic ion cyclotron waves near the plasmapause. J. Geophys. Res. 101, 15331–15343 (1996)ADSCrossRefGoogle Scholar
  46. Fuselier, S.A., Anderson, B.J.: Low-energy He+ and H+ distributions and proton cyclotron waves in the afternoon equatorial magnetosphere. J. Geophys. Res. 101, 13255–13265 (1996)ADSCrossRefGoogle Scholar
  47. Galand, M., Richmond, A.D.: Ionospheric electrical conductances produced by auroral proton precipitation. J. Geophys. Res. 106, 117–125 (2001)ADSCrossRefGoogle Scholar
  48. Galand, M., Roble, R.G., Lummerzheim, D.: Ionization by energetic protons in thermosphere–ionosphere electrodynamics general circulation model. J. Geophys. Res. 104, 27973–27989 (1999)ADSCrossRefGoogle Scholar
  49. Galand, M., Fuller-Rowell, T.J., Codrescu, M.V.: Response of the upper atmosphere to auroral protons. J. Geophys. Res. 106, 127–139 (2001)ADSCrossRefGoogle Scholar
  50. Galeev, A.A.: Plasma turbulence in the magnetosphere with special regard to plasma heating. In: Hultquist, B., Stenflo, L. (eds.) Physics of the Hot Plasma in the Magnetosphere, pp. 251–270. Springer, New York (1975)CrossRefGoogle Scholar
  51. Gamayunov, K.V., Khazanov, G.V.: Crucial role of ring current H+ in electromagnetic ion cyclotron wave dispersion relation: Results from global simulations. J. Geophys. Res. 113, A11220 (2008). doi: 10.1029/2008JA013494ADSCrossRefGoogle Scholar
  52. Gamayunov, K.V., Khazanov, G.V., Veryaev, A.A., Gombosi, T.I.: The effect of the hot, anisotropic magnetospheric protons on the dispersion relation. Adv. Space Res. 13(4), 121–126 (1993)ADSCrossRefGoogle Scholar
  53. Garcia, H.A., Spjeldvik, W.N.: Anisotropy characteristics of geomagnetically trapped ions. J. Geophys. Res. 90, 347–358 (1985)ADSCrossRefGoogle Scholar
  54. Garner, T.W., Wolf, R.A., Spiro, R.W., Burke, W.J., Fejer, B.G., Sazykin, S., Roeder, J.L., Hairston, M.R.: Magnetospheric electric fields and plasma sheet injection to low L shells during the 4–5 June 1991 magnetic storm: Comparison between the rice convection model and observations. J. Geophys. Res. 109, A02214 (2004). doi: 10.1029/2003JA010208ADSCrossRefGoogle Scholar
  55. Gendrin, R., Troitskaya, V.A.: Preliminary results of a micropulsation experiment at conjugate points. Radio Sci. 69D, 1107–1116 (1965)Google Scholar
  56. Glauert, S.A., Horne, R.B.: Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. 110, A04206 (2005). doi: 10.1029/2004JA010851ADSCrossRefGoogle Scholar
  57. Gloeckler, G., Hamilton, D.C.: AMPTE ion composition results. Phys. Scr. 18, 73–84 (1987)CrossRefGoogle Scholar
  58. Gloeckler, G., Wilken, B., Stüdemann, W., Ipavich, F.M., Hovestadt, D., Hamilton, D.C., Kremser, G.: First composition measurement of the bulk of the storm-time ring current (1 to 300 keV/e) with AMPTE-CCE. Geophys. Res. Lett. 12, 325–328 (1985)ADSCrossRefGoogle Scholar
  59. Gomberoff, L., Neira, R.: Convective growth rate of ion cyclotron waves in a H+–He+ and H+–He+–O+ plasma. J. Geophys. Res. 88, 2170–2174 (1983)ADSCrossRefGoogle Scholar
  60. Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C., Smith, E.J., Tang, F., Akasofu, S.-I.: Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979). J. Geophys. Res. 94, 8835–8851 (1989)ADSCrossRefGoogle Scholar
  61. Goodman, M.L.: A three-dimensional, iterative mapping procedure for the implementation of an ionosphere–magnetosphere anisotropic Ohm’s law boundary condition in global magnetohydrodynamic simulations. Ann. Geophys. 13, 843–853 (1995)ADSCrossRefGoogle Scholar
  62. Gorbachev, O.A., Khazanov, G.V., Gamayunov, K.V., Krivorutsky, E.N.: A theoretical model for the ring current interaction with the Earth’s plasma sphere. Planet. Space Sci. 40, 859–872 (1992)ADSCrossRefGoogle Scholar
  63. Gringauz, K.I.: Plasmasphere and its interaction with ring current. Space Sci. Rev. 34, 245–257 (1983)ADSCrossRefGoogle Scholar
  64. Gringauz, K.I.: Structure and properties of the Earth plasmasphere. Adv. Space Res. 5, 391–400 (1985)ADSCrossRefGoogle Scholar
  65. Guglielmi, A., Kangas, J.: Pc1 waves in the system of solar-terrestrial relations: New reflections. J. Atmos. Solar-Terr. Phys. 69, 1635–1643 (2007)ADSCrossRefGoogle Scholar
  66. Guglielmi, A.V., Kangas, J., Potapov, A.V.: Quasiperiodic modulation of the Pc1 geomagnetic pulsations: An unsettled problem. J. Geophys. Res. 106, 25847–25856 (2001)ADSCrossRefGoogle Scholar
  67. Gurgiolo, C., Sandel, B.R., Perez, J.D., Mitchell, D.G., Pollock, C.J., Larsen, B.A.: Overlap of the plasmasphere and ring current: Relation to subauroral ionospheric heating. J. Geophys. Res. 110, A12217 (2005). doi: 10.1029/2004JA010986ADSCrossRefGoogle Scholar
  68. Hamilton, D.C., Gloeckler, G., Ipavich, F.M., Studemann, W., Wilkey, B., Kremser, G.: Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93, 14343–14355 (1988)ADSCrossRefGoogle Scholar
  69. Hardy, D.A., Gussenhoven, M.S., Raistrick, R., McNeil, W.J.: Statistical and functional representation of the pattern of auroral energy flux, number flux, and conductivity. J. Geophys. Res. 92, 12275–12294 (1987)ADSCrossRefGoogle Scholar
  70. Haselgrove, J.: Ray theory and a new method for ray tracing. In: Report of Conference on the Physics of the Ionosphere, pp. 355–364. Physical Society, London (1954)Google Scholar
  71. Haselgrove, C.B., Haselgrove, J.: Twisted ray paths in the ionosphere. Proc. Phys. Soc. 75, 357–363 (1960)ADSCrossRefGoogle Scholar
  72. Hoppe, M.M., Russell, C.T., Eastman, T.E., Frank, L.A.: Characteristics of the ULF waves associated with upstream ion beams. J. Geophys. Res. 87, 643–650 (1982)ADSCrossRefGoogle Scholar
  73. Horne, R.B.: Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation. J. Geophys. Res. 94, 8895–8909 (1989)ADSCrossRefGoogle Scholar
  74. Horne, R.B., Thorne, R.M.: On the preferred source location for the convective amplification of ion cyclotron waves. J. Geophys. Res. 98, 9233–9247 (1993)ADSCrossRefGoogle Scholar
  75. Horne, R.B., Thorne, R.M.: Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J. Geophys. Res. 99, 17259–17273 (1994)ADSCrossRefGoogle Scholar
  76. Horne, R.B., Thorne, R.M.: Wave heating of He+ by electromagnetic ion cyclotron waves in the magnetosphere: Heating near H+–He+ bi-ion resonance frequency. J. Geophys. Res. 102, 11457–11471 (1997)ADSCrossRefGoogle Scholar
  77. Horwitz, J.L., Baugher, C.R., Chappell, C.R., Shelley, E.G., Young, D.T., Anderson, R.R.: ISEE 1 observations of thermal plasma during periods of quieting magnetic activity. J. Geophys. Res. 86, 9989–10001 (1981)ADSCrossRefGoogle Scholar
  78. Hu, Y.D., Fraser, B.J.: Electromagnetic ion cyclotron wave amplification and source regions in the magnetosphere. J. Geophys. Res. 99, 263–272 (1994)ADSCrossRefGoogle Scholar
  79. Inan, U.S., Bell, T.F.: The plasmapause as a VLF wave guide. J. Geophys. Res. 82, 2819–2827 (1977)ADSCrossRefGoogle Scholar
  80. Ishida, J., Kokubun, S., McPherron, R.L.: Substorm effects on spectral structures of Pc 1 waves at synchronous orbit. J. Geophys. Res. 92, 143–158 (1987)ADSCrossRefGoogle Scholar
  81. Ishimoto, M., Romick, G., Meng, C.-I.: Model calculation of the N2 + first negative intensity and vibrational enhancement from energetic incident O+ energy spectra. J. Geophys. Res. 97, 8653–8660 (1992a)ADSCrossRefGoogle Scholar
  82. Ishimoto, M., Romick, G., Meng, C.-I.: Energy distribution of energetic O+ precipitation into the atmosphere. J. Geophys. Res. 97, 8619–8629 (1992b)ADSCrossRefGoogle Scholar
  83. Iyemori, T., Hayashi, K.: Pc 1 micropulsations observed by Magsat in ionospheric F region. J. Geophys. Res. 94, 93–100 (1989)ADSCrossRefGoogle Scholar
  84. Jaggi, R.K., Wolf, R.A.: Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 78, 2852–2866 (1973)ADSCrossRefGoogle Scholar
  85. Jordanova, V.K., Kozyra, J.U., Nagy, A.F., Khazanov, G.V.: Kinetic model of the ring current-atmosphere interactions. J. Geophys. Res. 102, 14279–14291 (1997)ADSCrossRefGoogle Scholar
  86. Jordanova, V.K., Farrugia, C.J., Thorne, R.M., Khazanov, G.V., Reeves, G.D., Thomsen, M.F.: Modeling ring current proton precipitation by EMIC waves during the May 14–16, 1997, storm. J. Geophys. Res. 106, 7–22 (2001)ADSCrossRefGoogle Scholar
  87. Kelley, M.C.: The Earth’s Ionosphere: Plasma Physics and Electrodynamics. Academic, San Diego, CA (1989)Google Scholar
  88. Kennel, C.F., Petschek, H.F.: Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966)ADSCrossRefGoogle Scholar
  89. Khazanov, G.V., Gamayunov, K.V.: Effect of electromagnetic ion cyclotron wave normal angle distribution on relativistic electron scattering in outer radiation belt. J. Geophys. Res. 112, A10209 (2007a). doi: 10.1029/2007JA012282ADSCrossRefGoogle Scholar
  90. Khazanov, G.V., Gamayunov, K.V.: Effect of oblique electromagnetic ion cyclotron waves on relativistic electron scattering: Combined release and radiation effects satellite (CRRES)-based calculation. J. Geophys. Res. 112, A07220 (2007b). doi: 10.1029/2007JA012300ADSCrossRefGoogle Scholar
  91. Khazanov, G.V., Gombosi, T.I., Gorbachev, O.A., Trukhan, A.A., Miller, R.H.: Thermodynamic effects of the ion-sound instability in the ionosphere. J. Geophys. Res. 99, 5721–5726 (1994)ADSCrossRefGoogle Scholar
  92. Khazanov, G.V., Kozyra, J.U., Gorbachev, O.A.: Magnetospheric convection and the effects of wave–particle interaction on the plasma temperature anisotropy in the equatorial plasmasphere. Adv. Space Res. 17(10), 117–128 (1995)ADSCrossRefGoogle Scholar
  93. Khazanov, G.V., Gamayunov, K.V., Jordanova, V.K., Krivorutsky, E.N.: A self-consistent model of the interacting ring current ions and electromagnetic ion cyclotron waves, initial results: Waves and precipitating fluxes. J. Geophys. Res. 107, 1085 (2002). doi: 10.1029/2001JA000180CrossRefGoogle Scholar
  94. Khazanov, G.V., Gamayunov, K.V., Jordanova, V.K.: Self-consistent model of magnetospheric ring current ions and electromagnetic ion cyclotron waves: The 2–7 May 1998 storm. J. Geophys. Res. 108, 1419 (2003a). doi: 10.1029/2003JA009856CrossRefGoogle Scholar
  95. Khazanov, G.V., Liemohn, M.W., Newman, T.S., Fok, M.-C., Spiro, R.W.: Self-consistent magnetosphere–ionosphere coupling: Theoretical studies. J. Geophys. Res. 108, 1122 (2003b). doi: 10.1029/2002JA009624CrossRefGoogle Scholar
  96. Khazanov, G.V., Gamayunov, K.V., Gallagher, D.L., Kozyra, J.U.: Self-consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves: Waves in multi-ion magnetosphere. J. Geophys. Res. 111, A10202 (2006). doi: 10.1029/2006JA011833ADSCrossRefGoogle Scholar
  97. Khazanov, G.V., Gamayunov, K.V., Gallagher, D.L., Kozyra, J.U., Liemohn, M.W.: Self-consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves. 2. Wave induced ring current precipitation and thermal electron heating. J. Geophys. Res. 112, A04209 (2007). doi: 10.1029/2006JA012033ADSCrossRefGoogle Scholar
  98. Kimura, I.: Effects of ions on whistler-mode ray tracing. Radio Sci. 1, 269–283 (1966)Google Scholar
  99. Kozyra, J.U., Nagy, A.F.: Ring current decay-coupling of ring current energy into the thermosphere/ionosphere system (Invited Review). J. Geomag. Geoelectr. 43(Suppl.), 285–297 (1991)CrossRefGoogle Scholar
  100. Kozyra, J.U., Cravens, T.E., Nagy, A.F., Fontheim, E.G., Ong, R.S.B.: Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region. J. Geophys. Res. 89, 2217–2233 (1984)ADSCrossRefGoogle Scholar
  101. Kozyra, J.U., Brace, L.H., Cravens, T.E., Nagy, A.F.: A statistical study of the subauroral electron temperature enhancement using Dynamics Explorer 2 Langmuir probe observations. J. Geophys. Res. 91, 11270–11280 (1986)ADSCrossRefGoogle Scholar
  102. Kozyra, J.U., Jordanova, V.K., Horne, R.B., Thorne, R.M.: Modeling of the contribution of Electromagnetic Ion Cyclotron (EMIC) waves to stormtime ring current erosion. In: Tsurutani, B.T., Gonzalez, W.D., Kamide, E.Y., Arballo, J.K. (eds.) Magnetic Storms. Geophys. Monogr. Ser., vol. 98, pp. 187–202. AGU, Washington, DC (1997a)CrossRefGoogle Scholar
  103. Kozyra, J.U., Nagy, A.F., Slater, D.W.: High-altitude energy source(s) for stable auroral red arcs. Rev. Geophys. 35, 155–190 (1997b)ADSCrossRefGoogle Scholar
  104. LaBelle, J., Treumann, R.A.: Poynting vector measurements of electromagnetic ion cyclotron waves in the plasmasphere. J. Geophys. Res. 97, 13789–13797 (1992)ADSCrossRefGoogle Scholar
  105. LaBelle, J., Treumann, R.A., Baumjohann, W., Haerendel, G., Sckopke, N., Paschmann, G., Lühr, H.: The duskside plasmapause/ring current interface: Convection and plasma wave observations. J. Geophys. Res. 93, 2573–2590 (1988)ADSCrossRefGoogle Scholar
  106. Lepping, R.P., Acuna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: The wind magnetic field investigation. Space Sci. Rev. 71, 207–229 (1995)ADSCrossRefGoogle Scholar
  107. Liemohn, M.W., Kozyra, J.U., Jordanova, V.K., Khazanov, G.V., Thomsen, M.F., Cayton, T.E.: Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys. Res. Lett. 26, 2845–2848 (1999)ADSCrossRefGoogle Scholar
  108. Liemohn, M.W., Kozyra, J.U., Clauer, C.R., Ridley, A.J.: Computational analysis of the near-Earth magnetospheric current system during two-phase decay storms. J. Geophys. Res. 106, 29531–29542 (2001)ADSCrossRefGoogle Scholar
  109. Liemohn, M.W., Ridley, A.J., Gallagher, D.L., Ober, D.M., Kozyra, J.U.: Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the April 17, 2002 magnetic storm. J. Geophys. Res. 109, A03209 (2004). doi: 10.1029/2003JA010304ADSCrossRefGoogle Scholar
  110. Liemohn, M.W., Ridley, A.J., Brandt, P.C., Gallagher, D.L., Kozyra, J.U., Ober, D.M., Mitchell, D.G., Roelof, E.C., DeMajistre, R.: Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. J. Geophys. Res. 110, A12S22 (2005). doi: 10.1029/2005JA011109ADSCrossRefGoogle Scholar
  111. Lorentzen, K.R., McCarthy, M.P., Parks, G.K., Foat, J.E., Millan, R.M., Smith, D.M., Lin, R.P., Treilhou, J.P.: Precipitation of relativistic electrons by interaction with electromagnetic ion cyclotron waves. J. Geophys. Res. 105, 5381–5389 (2000)ADSCrossRefGoogle Scholar
  112. Loto’aniu, T.M., Fraser, B.J., Waters, C.L.: Propagation of electromagnetic ion cyclotron wave energy in the magnetosphere. J. Geophys. Res. 110, A07214 (2005). doi: 10.1029/2004JA010816ADSCrossRefGoogle Scholar
  113. Lundblad, J.Å., Sóraas, F.: Proton observations supporting the ion cyclotron wave heating theory of SAR arc formation. Planet. Space Sci. 26, 245–254 (1978)ADSCrossRefGoogle Scholar
  114. Lundin, R., Sauvaud, J.-A., Rème, H., Balogh, A., Dandouras, I., Bosquet, J.M., Carlson, C., Parks, G.K., Möbius, E., Kistler, L.M., Klecker, B., Amata, E., Formisano, V., Dunlop, M., Eliasson, L., Korth, A., Lavraud, B., McCarthy, M.: Evidence for impulsive solar wind plasma penetration through the dayside magnetopause. Ann. Geophys. 21, 457–472 (2003)ADSCrossRefGoogle Scholar
  115. Lyons, L.R.: Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves. J. Plasma Phys. 12, 417–432 (1974)ADSCrossRefGoogle Scholar
  116. Lyons, L.R., Thorne, R.M.: Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. J. Geophys. Res. 77, 5608–5616 (1972)ADSCrossRefGoogle Scholar
  117. Lyons, L.R., Williams, D.J.: Quantitative Aspects of Magnetospheric Physics. Springer, New York (1984)Google Scholar
  118. Mauk, B.H.: Helium resonance and dispersion effects on geostationary Alfven/ion cyclotron waves. J. Geophys. Res. 87, 9107–9119 (1982)ADSCrossRefGoogle Scholar
  119. Maynard, N.C., Chen, A.J.: Isolated cold plasma regions: Observations and their relation to possible production mechanisms. J. Geophys. Res. 80, 1009–1013 (1975)ADSCrossRefGoogle Scholar
  120. Means, J.D.: Use of three-dimensional covariance matrix in analyzing the polarization properties of plane waves. J. Geophys. Res. 77, 5551–5559 (1972)ADSCrossRefGoogle Scholar
  121. Meredith, N.P., Thorne, R.M., Horne, R.B., Summers, D., Fraser, B.J., Anderson, R.R.: Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108, 1250 (2003). doi: 10.1029/2002JA009700CrossRefGoogle Scholar
  122. Moen, J., Brekke, A.: The solar flux influence on quiet time conductances in the auroral ionosphere. Geophys. Res. Lett. 20, 971–974 (1993)ADSCrossRefGoogle Scholar
  123. Mursula, K., Bräysy, T., Niskala, K., Russell, C.T.: Pc 1 pearls revised: Structured electromagnetic ion cyclotron waves on Polar satellite and on ground. J. Geophys. Res. 106, 29543–29553 (2001)ADSCrossRefGoogle Scholar
  124. Obayashi, T.: Hydromagnetic whistlers. J. Geophys. Res. 70, 1069–1078 (1965)ADSCrossRefGoogle Scholar
  125. Ober, D.M., Horwitz, J.L., Gallagher, D.L.: Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events. J. Geophys. Res. 102, 14595–14602 (1997)ADSCrossRefGoogle Scholar
  126. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, Jr., E.C., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: SWE, A comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55–71 (1995)ADSCrossRefGoogle Scholar
  127. Perraut, S., Gendrin, R., Roux, A., de Villedary, C.: Ion cyclotron waves: Direct comparison between ground-based measurements and observations in the source region. J. Geophys. Res. 89, 195–202 (1984)ADSCrossRefGoogle Scholar
  128. Rasmussen, C.E., Schunk, R.W.: Ionospheric convection driven by NBZ currents. J. Geophys. Res. 92, 4491–4504 (1987)ADSCrossRefGoogle Scholar
  129. Rasmussen, C.E., Guiter, S.M., Thomas, S.G.: Two-dimensional model of the plasmasphere: Refilling time constants. Planet. Space Sci. 41, 35–42 (1993)ADSCrossRefGoogle Scholar
  130. Rauch, J.L., Roux, A.: Ray tracing of ULF waves in a multicomponent magnetospheric plasma: Consequences for the generation mechanism of ion cyclotron waves. J. Geophys. Res. 87, 8191–8198 (1982)ADSCrossRefGoogle Scholar
  131. Richmond, A.D., Kamide, Y.: Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique. J. Geophys. Res. 93, 5741–5759 (1988)ADSCrossRefGoogle Scholar
  132. Ridley, A.J., Liemohn, M.W.: A model-derived storm time asymmetric ring current driven electric field description. J. Geophys. Res. 107, 1151 (2002). doi: 10.1029/2001JA000051CrossRefGoogle Scholar
  133. Ridley, A.J., DeZeeuw, D.L., Gombosi, T.I., Powell, K.G.: Using steady state MHD results to predict the global state of the magnetosphere–ionosphere system. J. Geophys. Res. 106, 30067–30076 (2001)ADSCrossRefGoogle Scholar
  134. Ridley, A.J., Gombosi, T.I., DeZeeuw, D.L.: Ionospheric control of the magnetosphere: Conductance. Ann. Geophys. 22, 567–584 (2004)ADSCrossRefGoogle Scholar
  135. Saito, T.: Geomagnetic pulsations. Space Sci. Rev. 10, 319–412 (1969)ADSCrossRefGoogle Scholar
  136. Sandanger, M., Soraas, F., Aarsnes, K., Oksavik, K., Evans, D.S.: Loss of relativistic electrons: Evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons. J. Geophys. Res. 112, A12213 (2007). doi: 10.1029/2006JA012138ADSCrossRefGoogle Scholar
  137. Schwarz, S., Denton, R.E.: XWHAMP – Waves in Homogeneous, Anisotropic, Multicomponent Plasmas. Northstar software documentation. Northstar, Dartmouth College, Hanover, NH (1991)Google Scholar
  138. Sheldon, R.B., Hamilton, D.C.: Ion transport and loss in the Earth’s quiet ring current. 1. Data and standard model. J. Geophys. Res. 98, 13491–13508 (1993)ADSCrossRefGoogle Scholar
  139. Stern, D.P.: The motion of a proton in the equatorial magnetosphere. J. Geophys. Res. 80, 595–599 (1975)ADSCrossRefGoogle Scholar
  140. Stix, T.H.: Waves in Plasmas. American Institute of Physics, College Park, MD (1992)Google Scholar
  141. Summers, D., Thorne, R.M.: Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108, 1143 (2003). doi: 10.1029/2002JA009489CrossRefGoogle Scholar
  142. Suvorov, E.V., Trakhtengerts, V.Y.: Ion acceleration in the magnetospheric ring current. Geomagn. Aeron. 27, 86–93 (1987)ADSGoogle Scholar
  143. Thorne, R.M., Horne, R.B.: The contribution of ion-cyclotron waves to electron heating and SAR-arcs excitation near the storm-time plasmapause. Geophys. Res. Lett. 19, 417–420 (1992)ADSCrossRefGoogle Scholar
  144. Thorne, R., Horne, R.: Energy transfer between energetic ring current H+ and O+ by electromagnetic ion cyclotron waves. J. Geophys. Res. 99, 17275–17282 (1994)ADSCrossRefGoogle Scholar
  145. Thorne, R., Horne, R.: Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during the geomagnetic storms. J. Geophys. Res. 102, 14155–14163 (1997)ADSCrossRefGoogle Scholar
  146. Thorne, R.M., Kennel, C.F.: Relativistic electron precipitation during magnetic storm main phase. J. Geophys. Res. 76, 4446–4453 (1971)ADSCrossRefGoogle Scholar
  147. Tinsley, B.A.: Energetic neutral atom precipitation during magnetic storms: optical emission, ionization, and energy deposition at low and middle latitudes. J. Geophys. Res. 84, 1855–1864 (1979)ADSCrossRefGoogle Scholar
  148. Tinsley, B.A.: Neutral atom precipitation – A review. J. Atmos. Terr. Phys. 43, 617–632 (1981)ADSCrossRefGoogle Scholar
  149. Troitskaya, V.A., Guglielmi, A.V.: Geomagnetic micropulsations and diagnostics of the magnetosphere. Space Sci. Rev. 7(5/6), 689–768 (1967)ADSCrossRefGoogle Scholar
  150. Tsyganenko, N.A., Singer, H.J., Kasper, J.C.: Storm-time distortion of the inner magnetosphere: How severe can it be? J. Geophys. Res. 108, 1209 (2003). doi: 10.1029/2002JA009808CrossRefGoogle Scholar
  151. Vasyliunas, V.M.: Mathematical models of magnetospheric convection and its coupling to the ionosphere. In: McCormac, B. (ed.) Particles and Fields in the Magnetosphere, pp. 60–71. D. Reidel, Norwell, MA (1970)CrossRefGoogle Scholar
  152. Volland, H.: A semiempirical model of large-scale magnetospheric electric fields. J. Geophys. Res. 78, 171–180 (1973)ADSCrossRefGoogle Scholar
  153. Weimer, D.R.: A flexible, IMF dependent model of high-latitude electric potentials having “space weather” applications. Geophys. Res. Lett. 23, 2549–2552 (1996)ADSCrossRefGoogle Scholar
  154. Wolf, R.A.: Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. J. Geophys. Res. 75, 4677–4698 (1970)ADSCrossRefGoogle Scholar
  155. Yabroff, I.: Computation of whistler ray paths. J. Res. NBS 65D, 485–505 (1961)Google Scholar
  156. Young, D.T., Geiss, T.J., Balsiger, H., Eberhardt, P., Ghiedmetti, A., Rosenbauer, H.: Discovery of He2 + and O2 + ions of terrestrial origin in the outer magnetosphere. Geophys. Res. Lett. 4, 561–564 (1977)ADSCrossRefGoogle Scholar
  157. Young, D.T., Perraut, S., Roux, A., de Villedary, C., Gendrin, R., Korth, A., Kremser, G., Jones, D.: Wave–particle interactions near WHe + observed on GEOS 1 and 2, 1. Propagation of ion cyclotron waves in the He+ rich plasma. J. Geophys. Res. 86, 6755–6772 (1981)ADSCrossRefGoogle Scholar
  158. Young, D.T., Balsiger, H., Geiss, J.: Correlations of magnetospheric ion composition with geomagnetic and solar activity. J. Geophys. Res. 87, 9077–9096 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Goddard Space Flight Center (GSFC) Heliophysics Science Div. (HSD)NASAGreenbeltUSA

Personalised recommendations