Kinetic Superthermal Electron Instabilities in the Ionosphere

Part of the Astrophysics and Space Science Library book series (ASSL, volume 372)


As shown in Chap. 7 and discussed in this chapter, superthermal electrons depart from a Maxwellian distribution. These departures can lead to plasma instabilities that can influence and further alter the electron distribution function, affecting, to a considerable extent, the energy balance of the Earth’s ionospheric plasma. The problem of plasma stability relative to the excitation of electrostatic oscillations is also of considerable interest in the study of the ionosphere, using, for example, incoherent backscatter. In this chapter we consider the instabilities associated with the presence of photoelectrons and secondary electrons in the ionosphere.


Plasma Wave Photoelectron Spectrum Ionospheric Plasma Plasma Oscillation Electron Distribution Function 


  1. Abren, V.J., Carlson, H.C.: Photoelectron energy loss and spectral feature deduced from the plasma line technique. J. Geophys. Res. 82, 1017–1023 (1977)ADSCrossRefGoogle Scholar
  2. Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., Sitenko, A.G., Stepanov, K.N.: Plasma Electrodynamics, vols. 1 and 2. Elsevier, New York (1975)Google Scholar
  3. Alexandrov, A.F., Bogdankevich, L.S. Rukhadze, A.A.: Fundamentals of Electrodynamics of Plasma. Nauka, Moscow (1988)Google Scholar
  4. Andrianov, N.V., Vershinin, E.F., Trakhtengerts, V.Yu.: The excitation of lower-hybrid resonance (LHR) waves in the topside ionosphere by low-energy electron and proton fluxes. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (in Russian), vol. 43, pp. 101–113. Nauka, Moscow (1977)Google Scholar
  5. Artsimovich, L.A., Sagdeev, R.Z.: Plasma Physics for Physicists. Atomizdat, Moscow (1979)Google Scholar
  6. Basu, B., Chang, T., Jasperce, J.R.: Electrostatic plasma instability in the daytime lower ionosphere. Geophys. Res. Lett. 9, 68–71 (1982)ADSCrossRefGoogle Scholar
  7. Bespalov, P.A., Trakhtengerts, V.Y.: Cyclotron instability of the Earth radiation belts. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 10, pp. 155–192. Springer, New York (1986)Google Scholar
  8. Bhatnagar, P., Gross, E., Krook, A.: Model for collision process in gases. Phys. Rev. 94, 511–525 (1954)ADSMATHCrossRefGoogle Scholar
  9. Bhatt, A.N., Nicolls, M.J., Sulzer, M.P., Kelley, M.C.: Observations of plasma line splitting in the ionospheric incoherent scatter spectrum. Phys. Rev. Lett. 100, 045005 (2008). doi: 10.1103/PhysRevLett.100.045005ADSCrossRefGoogle Scholar
  10. Blomberg, H.W.: Effect of plasma instability on F-region photoelectron distributions. J. Geophys. Res. 80, 2851–2853 (1975)ADSCrossRefGoogle Scholar
  11. Boskova, J., Jiricek, F., Smilauer, J., Triska, P.: VLF emissions at frequencies above the LHR in the plasmasphere as observed on low-orbiting Intercosmos satellites. Adv. Space Res. 6, 231–234 (1986)ADSCrossRefGoogle Scholar
  12. Carlson, H.C., Wickwar, V.B., Mantas, G.P.: The plasma line revisited as an aeronomical diagnostics. Geophys. Res. Lett. 4, 565–567 (1977)ADSCrossRefGoogle Scholar
  13. Cicerone, R.J.: Photoelectrons in the ionosphere: Radar measurements and theoretical computations. Rev. Geophys. Space Phys. 12, 259–271 (1974)ADSCrossRefGoogle Scholar
  14. Cicerone, R.J., Bowhill, S.A.: Photoelectron fluxes measured at Millstone Hill. Radio Sci. 6, 957–966 (1971)ADSCrossRefGoogle Scholar
  15. Djuth, F.T., Sulzer, M.P., Elder, J.H.: Application of the coded long-pulse technique to plasma line studies of the ionosphere. Geophys. Res. Lett. 21, 2725–2728 (1994)ADSCrossRefGoogle Scholar
  16. Gefan, G.D., Trukhan, A.A., Khazanov, G.V.: A method of calculating auroral fluxes. Ann. Geophys. 3, 135–140 (1985a)ADSGoogle Scholar
  17. Gefan, G.D., Trukhan, A.A., Khazanov, G.V.: Ionospheric plasma instability effects in a diffuse auroral zone. Ann. Geophys. 3, 141–144 (1985b)ADSGoogle Scholar
  18. Gefan, G.D., Trukhan, A.A., Khazanov, G.V.: The applicability of a collisional description of the interaction of inflowing auroral electrons with the ionospheric plasma. Geomagn. Aeron. 25, 722–724 (1985c)Google Scholar
  19. Gefan, G.D., Trukhan, A.A., Khazanov, G.V.: On the mechanism for the VHF emission of photoelectrons in the topside ionosphere. Geomagn. Aeron. (in Russian) 26, 416–420 (1986)ADSGoogle Scholar
  20. Ginzburg, V.L., Rukhadze, A.A.: Waves in Magnetoactive Plasma. Nauka, Moscow (1975)Google Scholar
  21. Gurevich, A.V.: Nonlinear Phenomena in the Ionosphere. Springer, New York (1978)CrossRefGoogle Scholar
  22. Hugfors, T., Lehtinen, M.: Electron temperature derived from incoherent scatter radar observations of the plasma line frequency. J. Geophys. Res. 86, 119–123 (1981)ADSCrossRefGoogle Scholar
  23. Ivanov, V.B., Ogorodnikov, P.A., Trukhan, A.A., Khazanov, G.V.: On the possibility of studying the photoelectron spectrum by the radio wave incoherent scatter method. Investigation of Ionospheric Dynamics, pp. 47–53. IZMIRAN, Moscow (1979)Google Scholar
  24. Ivanov, V.B., Trukhan, A.A., Khazanov, G.V.: The stability of midlatitude ionospheric plasma in the presence of photoelectrons. Radiofizika (in Russian) 23, 143–150 (1980) [English translation: Radiophys. Quantum Electron. 23, 104–109 (1980)]ADSGoogle Scholar
  25. Ivanov, V.B., Trukhan, A.A., Khazanov, G.V.: Properties of the incoherent scatter spectrum as a means of aeronomic diagnostics. Phys. Solariterr. Postdam 15, 125–129 (1981)Google Scholar
  26. Ivanov, V.B., Trukhan, A.A., Khazanov, G.V.: The stability of low-frequency oscillations of ionospheric plasma in the presence of photoelectrons. Radiofizika (in Russian) 25, 1087–1088 (1982a)ADSGoogle Scholar
  27. Ivanov, V.B., Ogorodnikov, P.A., Trukhan, A.A., Khazanov, G.V.: On the possibility of measuring the directed part of suprathermal electron spectrum by the method of incoherent scatter of radio waves. Ionosfernye issledovaniya (in Russian), vol. 35, pp. 145–150. Sovetskoe Radio, Moscow (1982b)Google Scholar
  28. James, H.G.: VLF-saucers. J. Geophys. Res. 81, 501–514 (1976)ADSCrossRefGoogle Scholar
  29. Kaladze, T.D., Krinberg, I.A.: The excitation of electrostatic cyclotron oscillations of ionospheric plasma due to photoionization. Radiofizika (in Russian) 21, 494–504 (1978) [English translation: Radiophys. Quantum Electron. 21, 337–344 (1978)]ADSGoogle Scholar
  30. Kelley, M.C., Earle, G.D.: Upper hybrid and Langmuir turbulence in the auroral E region. J.Geophys. Res. 93, 1993–1996 (1988)ADSCrossRefGoogle Scholar
  31. Khazanov, G.V.: The Kinetics of the Electron Plasma Component of the Upper Atmosphere. Nauka, Moscow (1979) [English translation: #80-50707, National Translation Center, Washington, DC (1980)]Google Scholar
  32. Khazanov, G.V., Liemohn, M.W.: Comparison of photoelectron theory against observations. In: Horwitz, J.L., Gallagher, D.L., Peterson, W.K. (eds.) Geospace Mass and Energy Flow. Geophys. Monogr. Ser., vol. 104, pp. 333–342. AGU, Washington, DC (1998)Google Scholar
  33. Konikov, Yu.V., Khazanov, G.V.: The Coulomb relaxation of the photoelectron spectrum fine structure. Ann. Geophys. 3, 89–94 (1985)ADSGoogle Scholar
  34. Korablev, L.V.: The stability of homogeneous plasma with isotropic distribution functions in a magnetic field. ZhETF (in Russian) 53, 1600–1609 (1967)Google Scholar
  35. Krinberg, I.A.: The Kinetics of Electrons in the Earth’s Ionosphere and Plasmasphere. Nauka, Moscow (1978)Google Scholar
  36. LaBelle, J., Weatherwax, A.T., Perring, J., Walsh, E., Trimpi, M.L., Inan, U.S.: Low-frequency impulsive auroral hiss observations at high geomagnetic latitudes. J. Geophys. Res. 103, 20459–20468 (1998)ADSCrossRefGoogle Scholar
  37. Lee, J.S., Doering, J.P., Bostrom, C.O., Potemra, T.A.: Measurement of the day time photoelectron energy distribution from AE-E with improved energy resolution. Geophys. Res. Lett. 5, 581–583 (1978)ADSCrossRefGoogle Scholar
  38. Lejeune, G.: On the inversion problem of the plasma line intensity measurements in the terms of photoelectron fluxes. Planet. Space Sci. 27, 557–560 (1979)ADSCrossRefGoogle Scholar
  39. Lejeune, G., Kofman, W.: Photoelectron distribution determination from plasma line intensity measurements obtained at Nancay (France). Planet. Space Sci. 25, 661–673 (1977)CrossRefGoogle Scholar
  40. Liperovsky, V.A., Pudovkin, M.I.: Anomalous Resistance and Double Layers in the Magnetospheric Plasma. Nauka, Moscow (1983)Google Scholar
  41. Lui, A.T.Y., Venkatesan, D., Anger, C.D., Akasofu, S.-I., Heikkila, W.J., Winningham, J.D., Burrows, J.R.: Simultaneous observations of particle precipitations and auroral emissions by the ISIS-satellite in the 19–28 MLT sector. J. Geophys. Res. 82, 2210–2226 (1977)ADSCrossRefGoogle Scholar
  42. Lyons, L.R., Williams, D.J.: Quantitative Aspects of Magnetospheric Physics. D. Reidel, Dordrecht (1984)Google Scholar
  43. Maggs, J.E.: Coherent generation of VLF-hiss. J. Geophys. Res. 81, 1707–1724 (1976)ADSCrossRefGoogle Scholar
  44. Matafonov, G.K.: A numerical simulation of the pitch-angle diffusion of photoelectrons in the plasmasphere. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (in Russian), vol. 47, pp. 146–152. Nauka, Moscow (1979)Google Scholar
  45. Matafonov, G.K., Vlasov, V.G.: Stability of photoelectron fluxes in geomagnetic plasma. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (in Russian), vol. 55, pp. 89–94. Nauka, Moscow (1984)Google Scholar
  46. Meng, S.J.: Simultaneous observations of low-energy electron precipitation and optical arcs in the evening sector by the DMSP-32 satellite. J. Geophys. Res. 81, 2771–2785 (1976)ADSCrossRefGoogle Scholar
  47. Mishin, E.V., Ruzhin, Yu.Ya., Telegin, V.A.: The Interaction of Electron Beams with Ionospheric Plasma. Gidrometeoizdat, Leningrad (1989)Google Scholar
  48. Mishin, E.V., Trukhan, A.A., Khazanov, G.V.: Plasma Effects of Superthermal Electrons in the Ionosphere. Nauka, Moscow (1990)Google Scholar
  49. Mukai, T., Hirao, K.: Rocket measurement of the differential energy spectrum of the photoelectrons. J. Geophys. Res. 78, 8395–8412 (1973)ADSCrossRefGoogle Scholar
  50. Omura, Y., Nunn, D., Matsomoto, H., Ryecroft, M.J.: A review of theoretical and numerical studies of VLF triggered emissions. J. Atmos. Terr. Phys. 53, 351–368 (1990)ADSCrossRefGoogle Scholar
  51. Oran, E.S., Strickland, D.J.: Photoelectron flux in the Earth’s ionosphere. Planet. Space Sci. 26, 1161–1177 (1978)ADSCrossRefGoogle Scholar
  52. Oyama, K.I., Hirao, K.: Anomalous heating of the thermal electrons near the focus of the Sq current vortex (Sq focus anomaly). J. Geomag. Geoelectr. 31, 11–19 (1979)ADSCrossRefGoogle Scholar
  53. Oyama, K.I., Hirao, K., Banks, P.M., Williamson, P.R.: Nonthermal components of the low energy electrons in the ionospheric E and F region. J. Geomag. Geoelectr. 35, 185–200 (1983)ADSCrossRefGoogle Scholar
  54. Paulsen, W.L., Inan, U.S.: Satellite observations of a new type of discrete VLF emission at L < 4. J. Geophys. Res. 93, 1817–1838 (1988)ADSCrossRefGoogle Scholar
  55. Perkins, F.W., Salpeter, F.E.: Enhancement of plasma density fluctuations by nonthermal electrons. Phys. Rev. A 139, 55–62 (1965)ADSGoogle Scholar
  56. Polyakov, V.M., Khazanov, G.V., Koen, M.A.: Ionosphere–magnetosphere photoelectrons transport. Phys. Solariterr. Potsdam 10, 93–108 (1979)Google Scholar
  57. Raspopov, O.M., Kleimenova, N.G.: Perturbation of the Earth’s Electromagnetic Field. LGU, Leningrad (1977)Google Scholar
  58. Rees, M.H., Stewart, A.I, Sharp, W.E., Hays, P.B., Hoffman, R.A., Brace, L.H., Doering, J.P., Peterson, W.K.: Coordinated rocket and satellite measurements of an auroral event. J. Geophys. Res. 82, 2250–2258 (1977)ADSCrossRefGoogle Scholar
  59. Salpeter, E.E.: Plasma density fluctuations in a magnetic field. Phys. Rev. 122, 1663–1674 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  60. Schunk, R.W., Hays, P.B.: Photoelectron energy losses to thermal electrons. Planet. Space Sci. 19, 113–117 (1971)ADSCrossRefGoogle Scholar
  61. Sheffield, J.: The Scattering of Electromagnetic Emission in Plasma. Atomizdat, Moscow (1978)Google Scholar
  62. Swartz, W.E., Nisbet, J.S., Green, A.S.: Analytic expression for the energy-transfer rate from photoelectrons to thermal electrons. J. Geophys. Res. 76, 8425–8426 (1971)ADSCrossRefGoogle Scholar
  63. Tashchilin, A.V., Krinberg, I.A.: Calculating photoelectron fluxes and heating rate of plasma in the topside ionosphere. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (in Russian), vol. 47, pp. 131–139. Nauka, Moscow (1979)Google Scholar
  64. Tereshchenko, E.D.: Determining ionospheric parameters by the plasma line method. Geomagn. Aeron. (in Russian) 2, 751–752 (1982)Google Scholar
  65. Trakhtengerts, V.Yu., Shapaev, V.I.: On the ionospheric waveguide excitation at lower-hybrid resonance by suprathermal particle fluxes. Radiofizika (in Russian) 20, 1104–1015 (1977) [English translation: Radiophys. Quantum Electron. 20, 694–702 (1977)]Google Scholar
  66. Trukhan, A.A.: Electrodynamical effects of the presence of suprathermal electrons in the Earth’s ionosphere. Ph.D. Thesis, Irkutsk State University, Russia (1983)Google Scholar
  67. Tsytovich, V.N.: Nonlinear Effects in Plasmas. Nauka, Moscow (1967)Google Scholar
  68. Valchuk, T.E., Galperin, Yu.I., Krante, Zh.: The diffuse auroral zone. Kosmich. Issledov. (in Russian) 17, 559–579 (1979)ADSGoogle Scholar
  69. Vershinin, E.F.: An investigation of the latitudinal distribution of continuous VHF emission. Ionosfernye issledovaniya (in Russian), vol. 22, pp. 109–114. Nauka, Moscow (1975)Google Scholar
  70. Vershinin, E.F., Gorshkov, Yu.N., Ponomarev, E.A.: On the generation of VLF waves in the ionosphere near LF plasma resonance. Geomagn. Aeron. (in Russian) 13, 615–623 (1979)Google Scholar
  71. Vidal-Madjar, D., Kofman, W., Lejeune, G.: Measures de la raie de plasma par diffusion incoherente a Nancay et premiers resultats morphologiques. Ann. Geophys. 31, 227–234 (1975)Google Scholar
  72. Volokitin, A.S., Krasnoselskikh, V.V., Mishin, Ye.V., Tyurmina, L.O., Sharova, V.A., Shkolnikova, S.I.: On the small-scale structure of intense field-aligned currents in high latitudes. Kosmich. Issledov. (in Russian) 22, 749–755 (1984)ADSGoogle Scholar
  73. Yugvenson, K.O., Perkins, F.W.: Radar Thompson scatter studies of photoelectrons in the ionosphere and Landau damping. J. Geophys. Res. 73, 97–110 (1968)ADSCrossRefGoogle Scholar
  74. Zheleznyakov, V.V.: Electromagnetic Waves in Cosmical Plasmas. Nauka, Moscow (1977)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Goddard Space Flight Center (GSFC) Heliophysics Science Div. (HSD)NASAGreenbeltUSA

Personalised recommendations